Lundi 13 Mars 2017

Espaces Vectoriels

Partie I. Étude d'un endomorphisme

On note $E = \mathbf{R}_2[X]$ et on considère l'application φ qui à tout polynôme $P \in \mathbf{R}_2[X]$ fait correspondre le polynôme $\varphi(P)$ défini par :

$$\varphi(P)(X) = (X^2 - 1) P''(X) + 2X P'(X)$$

- **1.** Montrez que φ est un endomorphisme de E.
- 3. Déterminez l'image et le noyau de φ .
- **4.a.** Soit $\lambda \in \mathbb{R}$. Montrez que $\varphi \lambda \cdot Id_E$ est bijectif, sauf lorsque $\lambda \in \{0, 2, 6\}$.
 - **b.** Donnez une base du noyau de $\varphi 6Id_E$.

Partie II. Equation différentielle linéaire d'ordre 2

On désigne par I l'intervalle $I=[-\frac{1}{2},\frac{1}{2}]$ et on considère sur I l'équation différentielle linéaire

$$(x^2 - 1)y'' + 2xy' - 6y = 0 (1)$$

- 1. Déterminez toutes les fonctions polynomiales solutions de (1) sur I.
- **2.** Soit K la solution de (1) vérifiant la condition initiale K(0) = 1. On définit la fonction $f: I \to \mathbf{R}$ par :

$$\forall x \in I, \quad f(x) = \frac{1}{(x^2 - 1)K^2(x)}$$

et on note $F: I \to \mathbf{R}$ la primitive de f s'annulant en 0.

- **a.** Montrez que la fonction KF est solution de (1).
- **b.** Déterminez la décomposition en éléments simples de f.
- **c.** Déduisez-en l'expression de F.
- **3.** On admet que l'espace S des solutions de (1) est un espace vectoriel de dimension 2. Donnez-en une base.

Partie III. Décomposition en éléments simples et application

Soient $d \in \mathbf{N}^*$ un entier naturel non nul et $\tau_1, \tau_2, \dots, \tau_d, d$ nombres réels différents de 1 et de -1 et deux à deux distincts.

On considère le polynôme L défini par $L(X) = \prod_{k=1}^{u} (X - \tau_k)$ et la fraction rationnelle

$$R(X) = \frac{1}{(X^2 - 1)L^2(X)}$$

On sait qu'il existe des nombres réels $\alpha, \beta, a_1, \ldots, a_d, b_1, \ldots, b_d$ tels que

$$R(X) = \frac{\alpha}{X - 1} + \frac{\beta}{X + 1} + \sum_{k=1}^{d} \frac{a_k}{(X - \tau_k)^2} + \sum_{k=1}^{d} \frac{b_k}{(X - \tau_k)}$$

- **1.** Calculez α et β en fonction de L(1) et L(-1).
- 2. Pour tout $k \in [1, d]$, exprimez a_k en fonction de τ_k et $L'(\tau_k)$.

 Indication: on pourra à cet effet introduire le polynôme $L_k(X) = \prod_{i \neq k} (X \tau_i)$.
- **3.** Pour tout $k \in [1, d]$, exprimez b_k en fonction de τ_k , de $L'(\tau_k)$ et de $L''(\tau_k)$.
- **4.** On définit le polynôme S par

$$S(X) = (X^2 - 1)L''(X) + 2XL'(X)$$

Montrez l'équivalence :

$$\forall k \in [1, d], b_k = 0 \iff \exists \mu \in \mathbf{R}, \ S(X) = \mu \cdot L(X)$$

En ce cas, exprimez μ en fonction de d.

5. Dans le cas où d est égal à 2, déterminez le polynôme L tel que

$$\forall k \in [1, 2], \quad b_k = 0$$

James Stirling (1692-1770) —

Mathématicien écossais découvert par Newton, était très ami avec de Moivre, Cramer et Euler. Il résolva le problème des trajectoires orthogonales. Il donne également un théorème à propos de la convergence d'un produit infini. Son équivalent asymptotique de n! est le plus connu.