Devoir surveillé n°3

Durée : 3 heures, calculatrices et documents interdits

I. Un exercice vu en TD.

Soit $\omega = \exp\left(\frac{2i\pi}{7}\right)$. Calculer $A = \omega + \omega^2 + \omega^4$ et $B = \omega^3 + \omega^5 + \omega^6$. (*Indication*: on pourra d'abord calculer AB et A + B.)

II. Homographies du plan complexe.

On introduit les parties de $\mathbb C$ suivantes :

- le cercle unité : $\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \} = \{ e^{i\theta} \mid \theta \in \mathbb{R} \};$
- le disque ouvert délimité par ce cercle : $\mathcal{D} = \{z \in \mathbb{C} \mid |z| < 1\}$;
- le demi-plan de Poincaré : $\mathscr{P} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}.$

Soit $a, b, c, d \in \mathbb{C}$ vérifiant $ad - bc \neq 0$. L'homographie définie par $h(z) = \frac{az + b}{cz + d}$ est la fonction h qui à tout nombre complexe z tel que $cz + d \neq 0$, associe $h(z) = \frac{az + b}{cz + d}$.

Partie 1 : Exemples

- 1) Soit h l'homographie définie par $h(z) = i\frac{1+z}{1-z}$.
 - a) Montrer que, pour tout $z \in \mathbb{U}$ tel que $z \neq 1$, $h(z) \in \mathbb{R}$.
 - **b)** Montrer que, pour tout $z \in \mathcal{D}$, $h(z) \in \mathcal{P}$.
 - c) Déterminer les points fixes de h, i.e. les nombres complexes z tels que h(z) = z.
 - d) Pour quel(s) nombre(s) complexe(s) Z l'équation h(z) = Z, d'inconnue z, possède-t-elle une solution sur \mathbb{C} ?
- 2) Soit g l'homographie définie par $g(z) = \frac{z-i}{z+i}$.
 - a) Montrer que, pour tout $z \in \mathbb{R}$, $g(z) \in \mathbb{U}$.
 - **b)** Montrer que, pour tout $z \in \mathcal{P}$, $g(z) \in \mathcal{D}$.

Partie 2: Homographies conservant \mathbb{U}

- 3) Soit $\theta \in \mathbb{R}$ et h l'homographie définie par $h(z) = \frac{e^{i\theta}}{z}$. Montrer que, pour tout $z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.
- **4)** Soit $\alpha \in \mathbb{C}$ tel que $\alpha \notin \mathbb{U}$, $\theta \in \mathbb{R}$ et h la fonction définie par $h(z) = e^{i\theta} \frac{z + \alpha}{\bar{\alpha}z + 1}$.
 - a) Montrer que h est une homographie, bien définie sur \mathbb{U} .
 - **b)** Montrer que, pour tout $z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.
- 5) Réciproquement, nous allons montrer que les homographies précédentes sont les seules à vérifier : $\forall z \in \mathbb{U}, h(z) \in \mathbb{U}$. Établissons deux résultats préliminaires.

- **a)** Montrer que, pour tout $\alpha, \beta \in \mathbb{C}$, $|\alpha + \beta|^2 = |\alpha|^2 + |\beta|^2 + 2 \operatorname{Re}(\bar{\alpha}\beta)$.
- **b)** Soit $a, b \in \mathbb{C}$. Montrer que si, pour tout $\theta \in \mathbb{R}$, $a + 2\operatorname{Re}\left(be^{-i\theta}\right) = 0$, alors a = b = 0.
- **6)** Soit $a, b, c, d \in \mathbb{C}$ tel que $ad bc \neq 0$ et h l'homographie définie par $h(z) = \frac{az + b}{cz + d}$ vérifiant, pour tout $z \in \mathbb{U}$, $h(z) \in \mathbb{U}$.
 - a) Établir que, pour tout $\theta \in \mathbb{R}$,

$$|a|^2 + |b|^2 + 2 \operatorname{Re}\left(\bar{a}be^{-i\theta}\right) = |c|^2 + |d|^2 + 2 \operatorname{Re}\left(\bar{c}de^{-i\theta}\right).$$

- **b)** En déduire que $|a|^2 + |b|^2 = |c|^2 + |d|^2$ et que $\bar{a}b = \bar{c}d$.
- c) Si a = 0, que peut-on dire de h?
- d) On suppose dorénavant que $a \neq 0$. Montrer que

$$(|a|^2 - |c|^2)(|a|^2 - |d|^2) = 0.$$

- e) Le cas |a| = |c| est-il possible?
- f) Que peut-on dire si |a| = |d|? Conclure.

III. Une équation différentielle.

Dans cet exercice, on cherche à déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables sur \mathbb{R} , 2π -périodiques et vérifiant : $\forall x \in \mathbb{R}$, $f'(x) = f(x - \pi) + \sin x$.

- 1) Question préliminaire : résoudre l'équation différentielle (E) : $f'' f = -\sin x + \cos x$.
- 2) Soit f une fonction solution du problème.
 - a) Montrer que la fonction f' est elle-même dérivable sur \mathbb{R} .
 - b) Montrer que f est solution d'une équation différentielle d'ordre 2 à coefficients constants, dont le second membre est une somme de fonctions trigonométriques.
 - c) En déduire qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ vérifiant

$$\forall x \in \mathbb{R} \quad f(x) = \alpha e^x + \beta e^{-x} + \frac{1}{2}(\sin x - \cos x)$$

Dans la suite on fixe un tel couple (α, β) .

d) En utilisant la périodicité de f, montrer

$$\forall x \in \mathbb{R} \quad \alpha (1 - e^{2\pi}) e^{x} + \beta (1 - e^{-2\pi}) e^{-x} = 0$$

- e) En dérivant la relation précédente, montrer que $\alpha = \beta = 0$
- 3) Réciproquement, la fonction trouvée est-elle solution du problème de départ?

— FIN —