Intégration des fonctions continues par morceaux sur un intervalle

P	Plan				
1	For	actions continues par morceaux	1		
	1.1	Subdivision d'un segment	1		
	1.2	Fonctions en escaliers	2		
	1.3	Fonctions continues par morceaux	3		
2		égration d'une fonction c.p.m sur un ment	4		
	2.1	Rappels: Primitive d'une fonction continue	4		
	2.2	Définitions	5		
	2.3	Propriétés de l'intégrale	6		
	2.4	Intégrale nulle d'une fonction continue positive	9		
	2.5	Inégalité de Cauchy-Schwartz	9		
	2.6	Somme de Riemann	10		
3	Calcule des integrales		10		
	3.1	Intégration par parties	10		
	3.2	Formule de Taylor avec reste intégrale .	14		
	3.3	Intégration par changement de variable	16		

	3.4	Intégration des fractions rationnelles	19
		3.4.1 Trois situations de base	19
		3.4.2 Intégration des éléments simples .	20
		3.4.3 Intégration des fonctions trigonométriques	21
4	Inte	égrales généralise ou impropres	22
	4.1	Primitive d' une fonction c.p.m	22
	4.2	Généralités sur les intégrales "impropres"	22
	4.3	Exemples fondamentaux	24
	4.4	Propriétés des intégrales convergentes .	25
	4.5	Cas des fonctions positives	25
	4.6	Calcul d'intégrales	28
		4.6.1 Changement de variable	28
		4.6.2 Intégration par parties	29
5	Inte	égrabilité	29
	5.1	Intégrale absolument convergente	29
	5.2	Fonctions intégrables	30
	5.3	Fonctions carré intégrables	32
6	Inte	égration des relation de comparaison	33

* * * * * * * * * * * * * * * * * * *

Dans tout le chapitre :

- \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} ;
- I et J désignent des intervalles non vides de \mathbb{R} .
- [a,b] désigne un segment de $\mathbb R$ tel que a < b

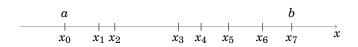
1 Fonctions continues par morceaux

1.1 Subdivision d'un segment

Définition 1.1. On appelle subdivision du **segment** [a,b] de \mathbb{R} toute famille finie $\sigma = (x_0,...,x_n)$ telle que

$$a = x_0 < \dots < x_n = b$$

L'ensemble $\{x_0,...,x_n\}$ s'appelle le support de la subdivision et se note $\operatorname{supp}(\sigma)$



Exemples 1.1. 1. $\sigma = (a, \frac{a+b}{2}, b)$ est un subdivision de [a, b]

2. $\sigma = (x_0, ..., x_n)$ avec $x_k = a + k \frac{b-a}{n}$ est un subdivision de [a, b] appelé subdivision régulière

Définition 1.2. Soient $\sigma_1 = (x_0, ..., x_n)$ et $\sigma_2 = (y_0, ..., y_m)$ deux subdivisions du **segment**, [a, b].

- 1. On dit que σ_1 est plus fine que σ_2 ssi supp $(\sigma_2) \subset \text{supp}(\sigma_1)$
- 2. La subdivision dont le support est $supp(\sigma_1) \cup supp(\sigma_2)$ se note $\sigma_1 \vee \sigma_2$

Remarque 1.1. $\sigma_1 \vee \sigma_2$ est plus fine que σ_1 et σ_2

1.2 Fonctions en escaliers

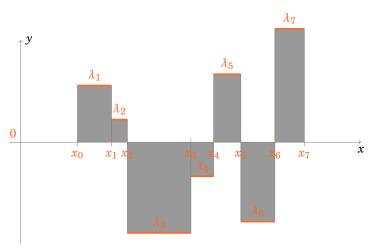
Définition 1.3. Soit $f:[a,b] \to \mathbb{K}$ une fonction numérique.

• On dit que f est une fonction en escalier sur [a,b], s'il existe une subdivision $\sigma = (x_0,...,x_n)$ de [a,b] telle que pour tout $k \in [1,n]$, la restriction de f à $]x_{k-1},x_k[$ est constante. C'est à dire

$$\exists \lambda_k \in \mathbb{K}, \forall x \in]x_{k-1}, x_k[, f(x) = \lambda_k.$$

La subdivision σ est alors dite subdivision adaptée à f

- Une fonction f est dite en escalier sur un intervalle I de $\mathbb R$ si et seulement si elle est en escalier sur tout segment de I
- L'ensemble des fonction en escalier sur un intervalle I est noté $\mathscr{E}(I,\mathbb{K})$



Fonction en escalier

Remarque 1.2. La valeur de f aux points x_i de la subdivision n'est pas imposée. Elle peut être égale à celle de l'intervalle qui précède ou de celui qui suit, ou encore une autre valeur arbitraire.

Exemples 1.2. 1.
$$f(x)$$

$$\begin{cases} -1 & \text{si} \quad 0 \le x < 1 \\ 3 & \text{si} \quad x = 1 \\ 4 & \text{si} \quad 1 < x \le 2 \end{cases}$$
 est en escalier sur $[0,2]$

2. La fonction partie entière est en escalier sur $\mathbb R$

Remarque 1.3. toute fonction constante sur I est en escalier sur I, la réciproque est fausse.

Proposition 1.1. Si f est en escalier un un segment [a,b] et σ est une subdivision adaptée à f alors toute subdivision plus fine que σ est encore adaptée à f.

En appliquant cette proposition aux subdivisions σ_1 et σ_2 adaptées à deux fonctions en escaliers f et g respectivement, on sait que $\sigma = \sigma_1 \vee \sigma_2$ est plus fine que σ_1 et σ_2 donc σ est adaptée à f et à g en même temps.

Corollaire 1.1. Soit f et g deux fonctions en escaliers, il existe une subdivision σ qui est adaptée à f et à g en même temps.

L'intérêt d'une telle subdivision est qu'elle permet de faire les opérations sur les fonctions en escaliers en gardant les memes sous intervalles $]x_{k-1},x_k[$ pour toutes les fonctions. Par exemple si $f=\lambda_k$ sur $]x_{k-1},x_k[$ et $g=\mu_k$ sur $]x_{k-1},x_k[$ alors $f+g=\lambda_k+\mu_k$ sur $]x_{k-1},x_k[$ et $fg=\lambda_k\mu_k$ sur $]x_{k-1},x_k[$, ce qui montre la proposition suivante :

Proposition 1.2. Si f,g sont en escalier sur un un intervalle I alors pour tout $\lambda \in \mathbb{K}$ les fonctions $f + \lambda g$ et fg sont en escalier sur I

Corollaire 1.2. $\mathcal{E}(I,\mathbb{K})$ est un \mathbb{K} espace vectoriel stable par multiplication

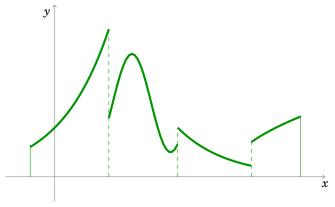
Proposition 1.3. Toute fonction en escalier sur un segment est bornée

1.3 Fonctions continues par morceaux

Définition 1.4. Soit $f:[a,b] \to \mathbb{K}$ une fonction numérique .

- On dit que f est continue par morceaux, s'il existe une subdivision $\sigma = (x_0, ..., x_n)$ de [a, b] telle que pour tout $k \in [\![1,n]\!]$, la restriction de f à $]x_{k-1}, x_k[$ est continue sur $]x_{k-1}, x_k[$ prolongeable par continuité à $[x_{k-1}, x_k]$. (C'est à dire admet une limite finie à droite en x_{k-1} et une limite à gauche en x_k pour tout $k \in \{1, ..., n\}$.) La subdivision σ est alors dite subdivision adaptée à f
- Une fonction f est dite continue par morceaux sur un intervalle I de \mathbb{R} si et seulement si elle est continue par morceaux sur tout segment de I
- L'ensemble des fonction continues par morceaux sur un intervalle I est noté $\mathscr{C}_{\mathscr{M}}(I,\mathbb{K})$

On utilisera souvent l'abréviation "CPM" pour dire " continue par morceaux "



Fonction CPM

Exemples 1.3. 1. f(x) $\begin{cases} 2x+1 & \text{si} \quad 0 \le x \le 1 \\ \sin(x) & \text{si} \quad 1 < x < 2 \end{cases}$ est continue par morceaux sur [0,2]

2. La fonction partie entière est continue par morceaux sur $\mathbb R$

- 3. f(x) $\begin{cases} 1 & \text{si } x = 0 \\ \frac{1}{x} & \text{si } 0 < x \le 2 \end{cases}$ n'est pas continue par morceaux sur [0,2] puisqu'elle n'est pas prolongeable par continuité en 04. f(x) $\begin{cases} 1 & \text{si } x = 0 \\ x \sin(\frac{1}{x}) & \text{si } 0 < x \le 2 \end{cases}$ est continue par morceaux sur [0,2] puisqu'elle est prolongeable par continuité

Remarque 1.4. • Toute fonction continue est continue par morceaux, la réciproque est fausse.

• Toute fonction en escalier est continue par morceaux, la réciproque est fausse.

Proposition 1.4. Si f est continues par morceaux sur un un segment [a,b] et σ est une subdivision adaptée à falors toute subdivision plus fine que σ est encore adaptée à f.

Proposition 1.5. Si f,g sont continues par morceaux sur un un intervalle I alors pour tout $\lambda \in \mathbb{K}$ les fonctions $f + \lambda g$ et fg sont continues par morceaux sur I

Corollaire 1.3. $\mathscr{C}_{\mathscr{M}}(I,\mathbb{K})$ est un \mathbb{K} espace vectoriel stable par multiplication

Proposition 1.6. Toute fonction continue par morceaux sur un segment est bornée

Intégration d'une fonction c.p.m sur un segment

2.1 Rappels: Primitive d'une fonction continue

- 1. Soit f une fonction continue sur un intervalle I de $\mathbb R$
 - Une primitive de f sur I est une fonction F dérivable sur I telle que F' = f
 - Si F,G sont deux primitives de f sur I alors F=G+c où c est une constante
 - Si $a \in I, y \in \mathbb{K}$ il existe une unique primitive F de f sur I qui vérifie f(a) = y
- 2. Soit f une fonction continue sur un segment [a,b] de \mathbb{R} L' intégrale de f sur [a,b] est définit par

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

où F est une primitive quelconque de f sur [a,b]

- 3. Si $a \in I$ la fonction $F(x) = \int_a^x f(t)dt$ est la primitive de f sur I qui s'annule en a
- 4. Primitives des fonctions usuelles :

$$\int e^x dx = e^x + c \quad \text{sur } \mathbb{R}$$

$$\int \cos x \, dx = \sin x + c \quad \text{sur } \mathbb{R}$$

$$\int \sin x \, dx = -\cos x + c \quad \text{sur } \mathbb{R}$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c \quad (n \in \mathbb{N}) \quad \text{sur } \mathbb{R}$$

$$\int x^\alpha \, dx = \frac{x^{\alpha+1}}{\alpha+1} + c \quad (\alpha \in \mathbb{R} \setminus \{-1\}) \text{ sur }]0, +\infty[$$

$$\int \frac{1}{x} \, dx = \ln|x| + c \quad \text{sur }]0, +\infty[\text{ ou }]-\infty, 0[$$

$$\int e^{x} dx = e^{x} + c \quad \text{sur } \mathbb{R}$$

$$\int \cos x \, dx = \sin x + c \quad \text{sur } \mathbb{R}$$

$$\int \sin x \, dx = -\cos x + c \quad \text{sur } \mathbb{R}$$

$$\int \int \frac{dx}{1 + x^{2}} = \arctan x + c \quad \text{sur } \mathbb{R}$$

$$\int \frac{dx}{1 + x^{2}} = \arctan x + c \quad \text{sur } \mathbb{R}$$

$$\int \frac{dx}{1 - x^{2}} = \begin{cases} \arcsin x + c \\ \frac{\pi}{2} - \arccos x + c \end{cases} \quad \text{sur }] - 1, 1[$$

$$\int \frac{dx}{\sqrt{1 - x^{2}}} = \begin{cases} \frac{\arcsin x + c}{\frac{\pi}{2} - \arccos x + c} \quad \text{sur }] - 1, 1[$$

$$\int \frac{dx}{\sqrt{x^{2} + 1}} = \begin{cases} Argshx + c \\ \ln(x + \sqrt{x^{2} + 1}) + c \end{cases} \quad \text{sur } \mathbb{R}$$

$$\int \frac{dx}{\sqrt{x^{2} - 1}} = \begin{cases} Argchx + c \\ \ln(x + \sqrt{x^{2} - 1}) + c \end{cases} \quad \text{sur } x \in]1, +\infty[$$

Remarque 2.1. Ces primitives sont à connaître par cœur.

- 1. Voici comment lire ce tableau. Si f est la fonction définie sur \mathbb{R} par $f(x) = x^n$ alors la fonction : $x \mapsto \frac{x^{n+1}}{n+1}$ est une primitive de f sur \mathbb{R} . Les primitives de f sont les fonctions définies par $x \mapsto \frac{x^{n+1}}{n+1} + c$ (pour c une constante réelle quelconque). Et on écrit $\int x^n dx = \frac{x^{n+1}}{n+1} + c$, où $c \in \mathbb{R}$.
- 2. Souvenez vous que la variable sous le symbole intégrale est une variable muette. On peut aussi bien écrire $\int t^n dt = \frac{x^{n+1}}{n+1} + c.$
- 3. La constante est définie pour un intervalle. Si l'on a deux intervalles, il y a deux constantes qui peuvent être différentes. Par exemple pour $\int \frac{1}{x} dx$ nous avons deux domaines de validité : $I_1 =]0, +\infty[$ et $I_2 =]-\infty, 0[$. Donc $\int \frac{1}{x} dx = \ln x + c_1 \text{ si } x > 0$ et $\int \frac{1}{x} dx = \ln |x| + c_2 = \ln(-x) + c_2 \text{ si } x < 0$.
- 4. On peut trouver des primitives aux allures très différentes par exemple $x \mapsto \arcsin x$ et $x \mapsto \frac{\pi}{2} \arccos x$ sont deux primitives de la même fonction $x \mapsto \frac{1}{\sqrt{1-x^2}}$. Mais bien sûr on sait que $\arcsin x + \arccos x = \frac{\pi}{2}$, donc les primitives diffèrent bien d'une constante!

2.2 Définitions

$$\sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f_k(t) dt$$

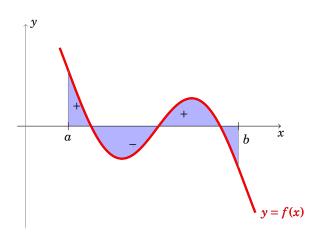
ne dépend pas de la subdivision choisie sur [a,b] . On l'appelle intégrale de f sur [a,b] on le note $\int_{[a,b]} f$ ou $\int_{[a,b]} f(t) dt$

Remarque 2.2. f_k est une fonction continue sur $[a_{k-1}, a_k]$ donc

$$\int_{a_k}^{a_{k+1}} f_k(t) dt = F_k(a_{k+1}) - F_k(a_k)$$

où F_k est une primitive de f_k sur $[a_{k-1}, a_k]$

Remarque 2.3. Géométriquement l'intégrale de f sur [a,b] est l'aire algébrique de de la partie du plan comprise entre l'axe (ox), la courbe de f est les droites x = a et x = b: l'aire d'une partie au dessus de l'axe (ox) est positive et l'aire de celle au dessous de (ox) est multipliée par(-1)



Proposition 2.1. Si f,g sont continues par morceaux sur [a,b], égales sauf en un nombre fini de points alors

$$\int_{[a,b]} f = \int_{[a,b]} g$$

Définition 2.2. Soit f continue par morceaux sur un intervalle I et $a,b \in I$. On definit $\int_a^b f(t)dt$ Par :

•
$$\int_a^b f(t)dt = \int_{[a,b]} f$$
 Si $a < b$

•
$$\int_{a}^{b} f(t)dt = -\int_{[b,a]}^{a} f(t)dt \qquad \text{Si } a > b$$

•
$$\int_a^b f(t)dt = 0$$
 Si $a = b$

 $\int_{a}^{a} f(x)ax = 0 \quad \text{Si } a = b$ Exemples 2.1. Soit f(x) $\begin{cases} 2x & \text{si } 0 \le x \le \pi \\ \sin(x) & \text{si } \pi < x \le 2\pi \end{cases}$

Alors

$$\int_0^{2\pi} f(x) \, dx = \int_0^{\pi} 2x \, dx + \int_{\pi}^{2\pi} \sin(x) \, dx = \left[x^2 \right]_0^{\pi} + \left[-\cos(x) \right]_{\pi}^{2\pi} = \pi^2 - 2$$

Propriétés de l'intégrale

Théorème 2.1. Soient f, g deux fonctions c.p.m sur [a,b] avec a < b à valeurs dans \mathbb{K} et $\lambda \in \mathbb{K}$. Alors

1. Linéarité:

$$\int_{a}^{b} f + \lambda g = \int_{a}^{b} f + \lambda \int_{a}^{b} g$$

En d'autres termes l'application :

$$\left\{ \begin{array}{ccc} \mathscr{C}_{\mathscr{M}}([a,b],\mathbb{K}) & \to & \mathbb{K} \\ f & \mapsto & \int_a^b f \end{array} \right. \text{ est linéaire}$$

2. **Relation de Chasles :** Pour tout $c \in [a, b]$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

3. Inégalité triangulaire :

$$|\int_a^b f| \le \int_a^b |f|$$

4. Inégalité de la moyenne :

$$|\int_{a}^{b} fg| \le \sup_{[a,b]} |f| \int_{a}^{b} |g|$$

En particulier

$$\left| \int_{a}^{b} f \right| \le (b - a) \sup_{[a,b]} |f|$$

5. Si de plus $\mathbb{K} = \mathbb{R}$ alors

(a) Positivité

$$f \ge 0 \text{ sur } [a,b] \implies \int_a^b f \ge 0$$

(b) Croissance

$$f \le g \text{ sur } [a,b] \implies \int_a^b f \le \int_a^b g$$

Si on n'arrive pas à comparer a et b les propriétés précédentes deviennent :

Théorème 2.2. Soient f,g deux fonctions c.p.m sur I à valeurs dans \mathbb{K} , et $\lambda \in \mathbb{K}$. Alors pour tout $a,b \in I$ on a

1. Linéarité:

$$\int_{a}^{b} f + \lambda g = \int_{a}^{b} f + \lambda \int_{a}^{b} g$$

2. **Relation de Chasles :** Pour tout $c \in I$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

3. Inégalité triangulaire :

$$\left| \int_{a}^{b} f \right| \le \int_{\min(a,b)}^{\max(a,b)} |f| = \left| \int_{a}^{b} |f| \right|$$

4. Inégalité de la moyenne :

$$\left| \int_{a}^{b} f g \right| \leq \sup_{[a,b]} |f| \int_{\min(a,b)}^{\max(a,b)} |g|$$

en particulier

$$\left| \int_{a}^{b} f \right| \le |b - a| \sup_{[a,b]} |f|$$

5. Si de plus $\mathbb{K} = \mathbb{R}$ et a > b alors

$$f \ge 0 \text{ sur } [a,b] \Rightarrow \int_a^b f \le 0$$

(b)

$$f \le g \text{ sur } [a,b] \implies \int_a^b f \ge \int_a^b g$$

Remarque 2.4. Notez qu' en général

$$\int_{a}^{b} (fg)(x) dx \neq \left(\int_{a}^{b} f(x) dx\right) \left(\int_{a}^{b} g(x) dx\right)$$

Par exemple, soit $f:[0,1] \to \mathbb{R}$ la fonction définie par f(x)=1 si $x \in [0,\frac{1}{2}[$ et f(x)=0 sinon. Soit $g:[0,1] \to \mathbb{R}$ la fonction définie par g(x)=1 si $x \in [\frac{1}{2},1[$ et g(x)=0 sinon. Alors $f(x) \times g(x)=0$ pour tout $x \in [0,1]$ et donc $\int_0^1 f(x)g(x)\,dx=0$ alors que $\int_0^1 f(x)\,dx=\frac{1}{2}$ et $\int_0^1 g(x)\,dx=\frac{1}{2}$.

Exercice 1.

- 1. Soient $m, n \in \mathbb{Z}^2$ avec $n \ge m$. Calculer $\int_m^n E(x) dx$, où E(x) désigne la partie entière de x.
- 2. Calculer $\int_{-1}^{2} x|x|dx$.

Solution:

1. Si p est un entier, alors

$$\int_{p}^{p+1} E(x)dx = \int_{p}^{p+1} p dx = p.$$

On en déduit que

$$\int_{m}^{n} E(x)dx = \sum_{p=m}^{n-1} \int_{p}^{p+1} E(x)dx$$
$$= \sum_{p=m}^{n-1} p$$
$$= \frac{(n-m)(n+m-1)}{2}$$

(la dernière somme étant la somme d'une suite arithmétique).

2. On va, par la propriété de Chasles, faire la somme de l'intégrale sur [-1,0], puis sur [0,2], intervalles où s'exprime facilement |x|. On obtient:

$$\int_{-1}^{2} x|x|dx = \int_{-1}^{0} x|x|dx + \int_{0}^{2} x|x|dx$$

$$= \int_{-1}^{0} -x^{2}dx + \int_{0}^{2} x^{2}dx$$

$$= \left[-\frac{x^{3}}{3} \right]_{-1}^{0} + \left[\frac{x^{3}}{3} \right]_{0}^{2}$$

$$= \frac{7}{3}.$$

Exercice 2. Montrer que $\lim_{n\to+\infty} \int_0^1 \frac{e^{inx}}{(1+inx)^2} dx = 0$

Solution : Posons $u_n \int_0^1 \frac{e^{inx}}{(1+inx)^2} dx$, on appliquant l'inégalité de la moyenne on a :

$$|u_n| \le \int_0^1 \frac{1}{1 + (nx)^2} dx = \left[\frac{1}{n} \arctan(nx)\right]_0^1 = \frac{1}{n} \arctan(n) \longrightarrow 0$$

Exercice 3. Pour $n \ge 0$, on définit

$$I_n = \int_0^1 \frac{x^n}{1+x} dx.$$

- 1. Montrer que la suite (I_n) est décroissante.
- 2. Démontrer que la suite (I_n) tend vers 0.
- 3. Pour $n \ge 0$, calculer $I_n + I_{n+1}$.
- 4. En déduire $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^k}{k+1}$.

Solution:

- 1. Pour tout x dans [0,1] on a $x^{n+1} \le x^n$ donc $\frac{x^{n+1}}{1+x} \le \frac{x^n}{1+x}$ dù le résultat par intégration
- 2. On majore la fonction à intégrer, plus précisément le dénominateur. En effet, pour tout $x \in [0,1]$, on a

$$0 \le \frac{1}{1+x} \le 1 \implies 0 \le \frac{x^n}{1+x} \le x^n.$$

En intégrant cette inégalité entre 0 et 1, on trouve

$$0 \le I_n \le \int_0^1 x^n dx = \frac{1}{n+1}.$$

Par le théorème des gendarmes, la suite (I_n) tend vers 0.

3. On a

$$I_n + I_{n+1} = \int_0^1 \frac{x^n + x^{n+1}}{1+x} dx = \int_0^1 \frac{x^n (1+x)}{1+x} dx = \int_0^1 x^n dx = \int_0^1 \frac{x^n (1+x)}{1+x} dx = \frac{1}{n+1}.$$

4. Notons $S_n = \sum_{k=1}^n \frac{(-1)^k}{k+1}$. En remplaçant $\frac{1}{k+1}$ par $I_k + I_{k+1}$, on trouve

$$S_n = (I_0 + I_1) - (I_1 + I_2) + (I_2 + I_3) - \dots + (-1)^k (I_n + I_{n+1}).$$

De nombreux termes de cette somme se simplifient et on trouve

$$S_n = I_0 + (-1)^{n+1} I_{n+1}$$
.

Comme (I_n) tend vers 0, on en déduit que (S_n) converge vers I_0 . Reste à calculer cette dernière intégrale. On trouve

$$I_0 = \int_0^1 \frac{1}{1+x} dx = [\ln(1+x)]_0^1 = \ln 2.$$

2.4 Intégrale nulle d'une fonction continue positive

Théorème 2.3. Soit f une fonction **continue**, **positive** sur [a,b] à valeurs dans \mathbb{R} . Alors:

$$\int_{a}^{b} f = 0 \quad \Leftrightarrow \quad f = 0 \quad \text{sur} \quad [a, b]$$

Remarques 2.1. 1. Il faut insister sur l'hypothèse de **continuité** . par exemple si f = 0 sur [0,1[et f(1) = 1 alors f est c.p.m positive sur [0,1] et $\int_0^1 f = 0$ mais f n'est pas nulle sur [0,1].

- 2. Si f est **continue**, **positive non nulle** sur [a,b] à valeurs dans \mathbb{R} alors $\int_a^b f > 0$
- 3. Le théorème reste valable si f garde un signe constant sur [a,b]

Preuve: Par contraposition, supposons que $f \neq 0$ et montrons que $\int_a^b f > 0$. il existe $c \in]a,b[$ tq f(c) > 0 puisque f est continue sur [a,b] il existe α et β tels que $a \leq \alpha < c < \beta \leq b$ et

$$\forall x \in [\alpha,\beta] \quad f(x) > 0$$

f est continue sur le segment $[\alpha, \beta]$ donc elle est bornée et atteint ses bornes sur $[\alpha, \beta]$. Il existe alors $d \in [\alpha, \beta]$ tel que $f(d) = \inf_{[\alpha, \beta]} f$. Finalement :

$$\int_{a}^{b} f = \underbrace{\int_{\alpha}^{\alpha} f}_{\geq 0} + \int_{\alpha}^{\beta} f + \underbrace{\int_{\beta}^{b} f}_{\geq 0} \geq \int_{\alpha}^{\beta} f \geq (\beta - \alpha) f(d) > 0$$

Exercice 4. Déterminer les fonctions continues $f:[0,1] \to [0,1]$ vérifiant $\int_0^1 f(t)dt = \int_0^1 f^2(t)dt$.

Solution: Soit f une solution. Alors

$$\int_0^1 \bigl(f(t)-f^2(t)\bigr)dt = 0 \iff \int_0^1 f(t)\bigl(1-f(t)\bigr)dt = 0.$$

Or, puisque f est à valeurs dans [0,1], la fonction $t \in [0,1] \mapsto f(t) \left(1-f(t)\right)$ est positive ou nulle. De plus, elle est continue et son intégrale sur [0,1] est nulle. Ainsi, elle est identiquement nulle. Ceci entraine que pour tout $t \in [0,1]$, on a f(t)=0 ou f(t)=1. Maintenant, f est continue. Si elle prend la valeur 0 et la valeur 1, par le théorème des valeurs intermédiaires, elle doit prendre toute valeur comprise entre 0 et 1, ce qui ne peut pas être le cas. On en déduit que f=0 ou f=1. Réciproquement, ces fonctions sont solutions. On a donc démontré que les seules fonctions continues $f:[0,1] \to [0,1]$ vérifiant $\int_0^1 f(t)dt = \int_0^1 f^2(t)dt$ sont les fonctions constantes égales à 0 ou à 1.

Exercice 5. Soit $f[a,b] \longrightarrow \mathbb{R}$ continue . Montrer que $\left| \int_b^a f \right| = \int_b^a |f| \iff f \ge 0$ ou $f \le 0$

Solution: Discuter en deux cas: si $\int_{h}^{a} f \ge 0$ ou $\int_{h}^{a} f \le 0$ et utiliser le fait que |f| - f et |f| + f sont continues positives

2.5 Inégalité de Cauchy-Schwartz

Théorème 2.4 (*Inégalité de Cauchy-Schwartz*). Soient $f,g \in \mathscr{C}_{\mathscr{M}}([a,b],\mathbb{K})$. Alors

$$\left| \int_a^b fg \right|^2 \le (\int_a^b |f|^2) (\int_a^b |g|^2)$$

Corollaire 2.1 (*Inégalité de Minkowski*). Soient $f,g \in \mathscr{C}_{\mathscr{M}}([a,b],\mathbb{K})$. Alors

$$\left(\int_{a}^{b} |f+g|^{2}\right)^{\frac{1}{2}} \leq \left(\int_{a}^{b} |f|^{2}\right)^{\frac{1}{2}} + \left(\int_{a}^{b} |g|^{2}\right)^{\frac{1}{2}}$$

page:9/ **34**

2.6 Somme de Riemann

Théorème 2.5 (Somme de Riemann). Soit f une fonction continue sur [a,b] alors:

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\frac{b-a}{n}\right) = \int_a^b f$$

$$\lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) = \int_{a}^{b} f$$

Corollaire 2.2 (cas particulier a = 0, b = 1). Soit f une fonction continue sur [0,1] alors:

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f$$

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \int_{0}^{1} f$$

Exemple 2.1. calculer les limites

1.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2}$$

2.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k\pi}{4n}\right)^2 \tan^2\left(\frac{k\pi}{4n}\right)$$

3.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{\sqrt{k}\sqrt{n-k}}{n^2}$$

Solution :

1.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2} = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + (\frac{k}{n})^2} = \int_{0}^{1} \frac{1}{1 + x^2} dx = \frac{\pi}{4}$$

2.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \left(\frac{k\pi}{4n}\right)^2 \tan^2(\frac{k\pi}{4n}) = \int_0^{\frac{\pi}{4}} x \tan^2(x)$$
 faire un integration par partie

3.
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{\sqrt{k}\sqrt{n-k}}{n^2} = \lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{\frac{k}{n}} \sqrt{1 - \frac{k}{n}} = \int_{0}^{1} \sqrt{x - x^2} dx = \int_{0}^{1} \sqrt{\frac{1}{4} - (x - \frac{1}{2})^2} dx = \frac{1}{2} \int_{0}^{1} \sqrt{1 - (2x - 1)^2} dx = \frac{1}{4} \int_{-1}^{1} \sqrt{1 - u^2} du = \frac{\pi}{8}$$
(poser $u = \cos(t)$)

3 Calcule des integrales

3.1 Intégration par parties

Théorème 3.1. Soient u et v deux fonctions de classe \mathscr{C}^1 sur un intervalle [a,b].

$$\int_a^b u(x)v'(x) dx = \left[uv\right]_a^b - \int_a^b u'(x)v(x) dx$$

Notation. Le crochet $[F]_a^b$ est par définition $[F]_a^b = F(b) - F(a)$. Donc $[uv]_a^b = u(b)v(b) - u(a)v(a)$. Si l'on omet les bornes alors [F] désigne la fonction F + c où c est une constante quelconque.

La formule d'intégration par parties pour les primitives est la même mais sans les bornes :

$$\int u(x)v'(x) dx = [uv] - \int u'(x)v(x) dx.$$

La preuve est très simple :

Preuve: On a
$$(uv)' = u'v + uv'$$
. Donc $\int_a^b (u'v + uv') = \int_a^b (uv)' = [uv]_a^b$. D'où $\int_a^b uv' = [uv]_a^b - \int_a^b u'v$.

L'utilisation de l'intégration par parties repose sur l'idée suivante : on ne sait pas calculer directement l'intégrale d'une fonction f s'écrivant comme un produit f(x) = u(x)v'(x) mais si l'on sait calculer l'intégrale de g(x) = u'(x)v(x) (que l'on espère plus simple) alors par la formule d'intégration par parties on aura l'intégrale de f.

Exemple 3.1. Calcul de $\int_0^1 xe^x dx$. On pose u(x) = x et $v'(x) = e^x$. Nous aurons besoin de savoir que u'(x) = 1 et qu'une primitive de v' est simplement $v(x) = e^x$. La formule d'intégration par parties donne :

$$\int_0^1 x e^x dx = \int_0^1 u(x)v'(x) dx$$

$$= [u(x)v(x)]_0^1 - \int_0^1 u'(x)v(x) dx$$

$$= [xe^x]_0^1 - \int_0^1 1 \cdot e^x dx$$

$$= (1 \cdot e^1 - 0 \cdot e^0) - [e^x]_0^1$$

$$= e - (e^1 - e^0)$$

$$= 1$$

2. Calcul de $\int_{1}^{e} x \ln x \, dx$.

On pose cette fois $u = \ln x$ et v' = x. Ainsi $u' = \frac{1}{x}$ et $v = \frac{x^2}{2}$. Alors

$$\int_{1}^{e} \ln x \cdot x \, dx = \int_{1}^{e} uv' = \left[uv \right]_{1}^{e} - \int_{1}^{e} u'v = \left[\ln x \cdot \frac{x^{2}}{2} \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \frac{x^{2}}{2} \, dx$$

$$= \left(\ln e \frac{e^{2}}{2} - \ln 1 \frac{1^{2}}{2} \right) - \frac{1}{2} \int_{1}^{e} x \, dx = \frac{e^{2}}{2} - \frac{1}{2} \left[\frac{x^{2}}{2} \right]_{1}^{e} = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4} = \frac{e^{2} + 1}{4}$$

3. Calcul de $\int \arcsin x \, dx$.

Pour déterminer une primitive de $\arcsin x$, nous faisons artificiellement apparaître un produit en écrivant $\arcsin x = 1 \cdot \arcsin x$ pour appliquer la formule d'intégration par parties. On pose $u = \arcsin x$, v' = 1 (et donc $u' = \frac{1}{\sqrt{1-x^2}}$ et v = x) alors

$$\int 1 \cdot \arcsin x \, dx = \left[x \arcsin x \right] - \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= \left[x \arcsin x \right] - \left[-\sqrt{1 - x^2} \right]$$
$$= x \arcsin x + \sqrt{1 - x^2} + c$$

4. Calcul de $\int x^2 e^x dx$. On pose $u = x^2$ et $v' = e^x$ pour obtenir :

$$\int x^2 e^x \, dx = \left[x^2 e^x \right] - 2 \int x e^x \, dx$$

On refait une deuxième intégration par parties pour calculer

$$\int xe^x dx = [xe^x] - \int e^x dx = (x-1)e^x + c$$

D'où

$$\int x^2 e^x \, dx = (x^2 - 2x + 2)e^x + c.$$

Exercice 6. Déterminer une primitive des fonctions suivantes :

1.
$$x \mapsto \arctan(x)$$
 2. $x \mapsto (\ln x)^2$ 3. $x \mapsto \sin(\ln x)$.

Solution:

1. La fonction $x \mapsto \arctan x$ étant continue sur \mathbb{R} , elle admet une primitive sur cet intervalle. On intègre par parties en posant :

$$u(x) = \arctan x$$
 $u'(x) = \frac{1}{x^2 + 1}$
 $v'(x) = 1$ $v(x) = x$

de sorte que

$$\int \arctan t \, dt = x \arctan x - \int \frac{x}{x^2 + 1}.$$

La primitive que l'on doit encore rechercher est de la forme g'/g, et donc

$$\int \arctan t dt = x \arctan x - \frac{1}{2} \ln(x^2 + 1).$$

 La fonction x → (lnx)² étant continue sur]0,+∞[, elle admet des primitives sur cet intervalle. On se restreint à cet intervalle et on intègre par parties en posant.

$$u(x) = (\ln x)^2$$
 $u'(x) = 2\frac{\ln x}{x}$
 $v'(x) = 1$ $v(x) = x$

de sorte que

$$\int (\ln t)^2 dt = x(\ln x)^2 - 2 \int \ln t dt.$$

Une primitive de $x \mapsto \ln x$ étant $x \mapsto x \ln x - x$ (résultat qui se retrouve en intégrant par parties), on trouve finalement qu'une primitive de $x \mapsto (\ln x)^2$ est

$$x \mapsto x(\ln x)^2 - 2x \ln x + 2x$$
.

3. On va intégrer par parties deux fois. On travaille sur l'intervalle]0,+∞[, là où la fonction est bien définie et continue. On pose alors :

$$u(x) = \sin(\ln x)$$
 $u'(x) = \frac{1}{x}\cos(\ln x)$
 $v'(x) = 1$ $v(x) = x$

de sorte que

$$\int \sin(\ln x) dx = x \sin(\ln x) - \int \cos(\ln x).$$

On intègre une deuxième fois par parties en posant

$$\begin{array}{rclcrcl} u_1(x) & = & \cos(\ln x) & & u_1'(x) & = & -\frac{1}{x}\sin(\ln x) \\ v_1'(x) & = & 1 & & v_1(x) & = & x \end{array}$$

de sorte que

$$\int \cos(\ln x)dx = x\cos(\ln x) + \int \sin(\ln x).$$

En mettant tout cela ensemble, on trouve

$$\int \sin(\ln x)dx = x\sin(\ln x) - x\cos(\ln x) - \int \sin(\ln x)$$

soit

$$\int \sin(\ln x) = \frac{x}{2} (\sin(\ln x) - \cos(\ln x)).$$

Exercice 7. Calculer les intégrales suivantes :

1.
$$I = \int_0^1 x(\arctan x)^2 dx$$
 2. $J = \int_0^1 \frac{x \ln x}{(x^2 + 1)^2}$.

Solution:

1. On intègre par parties, en posant u'(x) = x et $v(x) = (\arctan x)^2$. On a $v'(x) = \frac{2\arctan(x)}{x^2 + 1}$, et ceci nous incite à considérer comme primitive de u' la fonction $u(x) = \frac{1}{2}(x^2 + 1)$, ce qui va simplifier les calculs. On obtient alors

$$I = \frac{1}{2} [(x^2 + 1)(\arctan x)^2]_0^1 - \int_0^1 \arctan x.$$

On calcule la dernière intégrale en réalisant à nouveau une intégration par parties, et on trouve :

$$I = \frac{\pi^2}{16} - \left[x \arctan x\right]_0^1 + \int_0^1 \frac{x}{x^2 + 1} dx$$
$$= \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2} \left[\ln(x^2 + 1)\right]_0^1$$
$$= \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2} \ln 2.$$

2. La fonction $f: x \mapsto \frac{x \ln x}{(x^2+1)^2}$ est continue sur]0,1], et elle tend vers 0 en 0. On peut donc la prolonger par continuité à [0,1] en posant f(0)=0, ce

Pour calculer cette intégrale, on va intégrer par parties entre a > 0 et 1, pour ne pas être gêné par les problèmes en 0. On pose donc J(a) = 0

$$u(x) = (\ln x)$$
 $v'(x) = \frac{x}{(x^2 + 1)^2}$ $u'(x) = \frac{1}{x}$ $v(x) = -\frac{1}{2(x^2 + 1)}$

ce qui donne

$$J(a) = \left[-\frac{\ln x}{2(x^2 + 1)} \right]_a^1 + \frac{1}{2} \int_a^1 \frac{dx}{x(x^2 + 1)}.$$

De plus,

$$\frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}$$

de sorte que

$$\int_{a}^{1} \frac{dx}{x(x^{2}+1)} = \left[\ln x - \frac{1}{2}\ln(x^{2}+1)\right]_{a}^{1} = -\frac{1}{2}\ln 2 - \ln(a) + \frac{1}{2}\ln(1+a^{2}).$$

On obtient donc que

$$J(a) = \frac{\ln a}{2(a^2 + 1)} - \frac{\ln 2}{4} - \frac{\ln a}{2} + \frac{1}{4}\ln(1 + a^2).$$

Reste à faire tendre a vers 0. Pour cela, on factorise par $\ln a$, et

$$J(a) = \frac{-a^2 \ln(a)}{2(a^2 + 1)} - \frac{\ln 2}{4} + \frac{1}{4} \ln(1 + a^2).$$

Comme $a^2 \ln(a)$ tend vers 0 lorsque a tend vers 0, de même que $\ln(1+a^2)$, on conclut finalement que

$$J = -\frac{\ln 2}{4}.$$

Nous allons étudier les intégrales définies par $I_n = \int_0^1 \frac{\sin(\pi x)}{x+n} dx$, pour tout entier n > 0. Exercice 8.

1. Montrer que $0 \le I_{n+1} \le I_n$.

2. Montrer que $I_n \le \ln \frac{n+1}{n}$. En déduire $\lim_{n \to +\infty} I_n$.

3. Calculer $\lim_{n\to+\infty} nI_n$.

Solution:

 $1. \ \ \text{Pour } 0 \leq x \leq 1, \text{ on a } 0 < x+n \leq x+n+1 \text{ et } \sin(\pi x) \geq 0, \text{ donc } 0 \leq \frac{\sin(\pi x)}{x+n+1} \leq \frac{\sin(\pi x)}{x+n}. \ \text{D'où } 0 \leq I_{n+1} \leq I_n \text{ par la croissance de l'intégrale.}$

2. De $0 \le \sin(\pi x) \le 1$, on a $\frac{\sin(\pi x)}{x+n} \le \frac{1}{x+n}$. D'où $0 \le I_n \le \int_0^1 \frac{1}{x+n} dx = \left[\ln(x+n)\right]_0^1 = \ln\frac{n+1}{n} \xrightarrow[n \to +\infty]{} 0$. 3. Nous allons faire une intégration par parties avec $u = \frac{1}{x+n}$ et $v' = \sin(\pi x)$ (et donc $u' = -\frac{1}{(x+n)^2}$ et $v = -\frac{1}{\pi}\cos(\pi x)$):

$$nI_n = n \int_0^1 \frac{1}{x+n} \sin(\pi x) dx$$

$$= -\frac{n}{\pi} \left[\frac{1}{x+n} \cos(\pi x) \right]_0^1 - \frac{n}{\pi} \int_0^1 \frac{1}{(x+n)^2} \cos(\pi x) dx$$

$$= \frac{n}{\pi(n+1)} + \frac{1}{\pi} - \frac{n}{\pi} J_n$$

Il nous reste à évaluer $J_n = \int_0^1 \frac{\cos(\pi x)}{(x+n)^2} dx$.

$$\left| \frac{n}{\pi} J_n \right| \quad \leq \quad \frac{n}{\pi} \int_0^1 \frac{|\cos(\pi x)|}{(x+n)^2} \quad dx \quad \leq \quad \frac{n}{\pi} \int_0^1 \frac{1}{(x+n)^2} \quad dx \quad = \quad \frac{n}{\pi} \left[-\frac{1}{x+n} \right]_0^1 \quad = \quad \frac{n}{\pi} \left(-\frac{1}{1+n} + \frac{1}{n} \right) \quad = \quad \frac{1}{\pi} \frac{1}{n+1} \quad \xrightarrow[n \to +\infty]{} \quad 0.$$

Donc $\lim_{n \to +\infty} nI_n = \lim_{n \to +\infty} \frac{n}{\pi(n+1)} + \frac{1}{\pi} - \frac{n}{\pi} J_n = \frac{2}{\pi}$

Soit $f:[0,1] \to \mathbb{R}$ une fonction continue; on pose $I_n = \int_0^1 t^n f(t) dt$. Exercice 9.

1. Montrer que $I_n \to 0$

2. On suppose que f est de classe C^2 . Montrer que $nI_n \to f(1)$.

Solution:

1. f est continue sur [0,1] donc bornée par suite

$$|I_n| \le \sup_{[0,1]} f \cdot \int_0^1 t^n dt = \frac{1}{n+1} \sup_{[0,1]} f \xrightarrow[n \to +\infty]{0}$$

2. Par une integration par partie on a

$$nI_n = n \cdot \left[\frac{1}{n+1} t^{n+1} f(t) \right]_0^1 - \frac{n}{n+1} \int_0^1 t^{n+1} f'(t) dt = \frac{n}{n+1} (f(1) - \int_0^1 t^{n+1} f'(t) dt)$$

Le raisonnement de 1. montre que $\int_0^1 t^{n+1} f'(t) dt \xrightarrow[n \to +\infty]{} 0$ et on a $\frac{n}{n+1} \xrightarrow[n \to +\infty]{} 1$ donc $nI_n \xrightarrow[n \to +\infty]{} f(1)$.

Exercice 10. (Lemme de Riemann-Lebesgue)

Soitf:[a,b] $\longrightarrow \mathbb{C}$ de classe C^1 sur [a,b] Montrer que $\lim_{n\to+\infty} \int_{-\infty}^{\infty} f(x)e^{inx}dx = 0$

Posons $I_n = \int_0^D f(x)e^{inx}dx$ une interaction par partie donne

$$I_n = \left[\frac{1}{in}e^{int}f(t)\right]_a^b - \frac{1}{in}\int_0^1 e^{int}f'(t) dt$$

et on a
$$\bullet \quad \left| \left[\frac{1}{in} e^{int} f(t) \right]_a^b \right| = \left| \frac{e^{inb} f(b) - e^{ina} f(a)}{in} \right| \leq \frac{|f(b)| + |f(a)|}{n} \xrightarrow[n \to +\infty]{} 0$$

$$\bullet \quad \left| \frac{1}{in} \int_a^b e^{int} f'(t) \, \mathrm{d}t \right| \leq \left| \frac{b-a}{in} \right| \sup_{[a,b]} |f'| \xrightarrow[n \to +\infty]{} 0$$
 D'où le résultat.

•
$$\left| \frac{1}{in} \int_a^b e^{int} f'(t) dt \right| \le \left| \frac{b-a}{in} \right| \sup_{[a,b]} |f'| \xrightarrow[n \to +\infty]{} 0$$

Formule de Taylor avec reste intégrale

Théorème 3.2. Soit $f \in C^{n+1}(I, \mathbb{K})$. Alors pour $(a, x) \in I^2$:

$$f(x) = f(a) + (x-a)f'(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
$$= \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

Preuve: par récurrence sur n:

- Vraie pour n=0 car $f(x)-f(a)=\int_a^x f'(t)dt$ avec f continue et de classe C^1 par morceaux. Supposons la propriété vraie au rang n fixé dans \mathbb{N} . Soit $f\in C^{n+1}(I,\mathbb{R})$ et de classe C^{n+2} par morceaux sur I.

Ainsi $f \in C^n(I, \mathbb{R})$ et de classe C^{n+1} par morceaux sur I d'où, par hypothèse de récurrence, on a $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$.

$$\star$$
 $f^{(n+1)} \in C^1 PM([a,x],\mathbb{R})$

$$\star \qquad t \mapsto \frac{(x-t)^n}{n!} \in C^1([a,x],\mathbb{R})$$

asi
$$f \in C^n(I,\mathbb{R})$$
 et de classe C^{n+1} par morceaux sur I d'où, par hypothèse de récurrence, on a $f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!}$

$$\star \qquad f^{(n+1)} \in C^1 PM([a,x],\mathbb{R})$$

$$\star \qquad t \mapsto \frac{(x-t)^n}{n!} \in C^1([a,x],\mathbb{R})$$
On peut intégrale par partie d'où :
$$\int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt \qquad = \qquad \left(-\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t)_a^x + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt \right)$$

$$= \qquad 0 + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

$$= \qquad 0 + \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

Donc
$$f(x) = \sum_{k=0}^{n+1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

П

Corollaire 3.1. si $f \in C^{n+1}(I,\mathbb{R})$, $a \in I$ et si M majore $\left| f^{(n+1)} \right|$, on a la relation :

$$\forall x \in I, \ \left| f(x) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) \right| \le M \frac{|x-a|^{n+1}}{(n+1)!}$$

connue sous le nom d'inégalité de Taylor-Lagrange.

Preuve : D'après le théorème de Taylor avec reste intégral on a

$$f(b) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

Ainsi

$$\left| \int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) dt \right| \leq \begin{cases} \int_{a}^{x} \left| \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \right| dt & \text{si } a \leq x \\ \int_{x}^{a} \left| \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \right| dt & \text{si } x \leq a \end{cases}$$

$$\leq \begin{cases} M \int_{a}^{x} \frac{(x-t)^{n}}{n!} dt & \text{si } a \leq x \\ M \int_{x}^{a} \frac{(t-x)^{n}}{n!} dt & \text{si } x \leq a \end{cases}$$

$$= M \frac{|x-a|^{n+1}}{(n+1)!}$$

Remarque 3.1. La fonction $f^{(n+1)}$ étant continue sur le segment [a,b], elle est bornée sur le segment [a,b]. C'est pourquoi on est sûr de l'existence d'un tel M. On peut prendre en particulier $M = \sup_{[a,b]} \left| f^{(n+1)} \right|$.

Exercice 11. Montrer que :

$$\forall x \in \mathbb{R}_+, \ x - \frac{x^3}{6} \le \sin x \le x - \frac{x^3}{6} + \frac{x^5}{5!}.$$

Solution:

$$\forall \, x \in \mathbb{R}_+, \, \left| \sin x - x + \frac{x^3}{6} \right| \leq \frac{x^5}{5!} \quad \text{puisque} : \left\{ \begin{array}{l} \forall \, u \in \mathbb{R}, \, |\sin^{(5)}(u)| = |\cos u| \leq 1 \\ \forall \, x \in \mathbb{R}_+, \, |x^5| = x^5 \end{array} \right.$$

Notamment $\forall x \in \mathbb{R}_+, \sin x \le x - \frac{x^3}{6} + \frac{x^5}{5!}$. On a de même

$$\forall \, x \in \mathbb{R}_+, \, |\sin x - x| \le \frac{x^3}{6} \quad \text{puisque} : \left\{ \begin{array}{l} \forall \, u \in \mathbb{R}, \, |\sin^{(3)}(u)| = |-\cos u| \le 1 \\ \forall \, x \in \mathbb{R}_+, \, |x^3| = x^3 \end{array} \right.$$

 $d'où x - \frac{x^3}{6} \le \sin x.$

Exercice 12. Montrer que

$$\forall x \in \mathbb{R}_+, x - \frac{x^2}{2} \le \ln(1+x) \le x$$

Solution: $\forall x \ge 0, f''(x) = -\frac{1}{(1+x)^2} \text{ donc } |f^{(2)}(x)| \le 1.$

Ainsi $|\ln(1+x)-x| \le \frac{x^2}{2}$. De même $|f'| \le 1$ d'où $|\ln(1+x)| \le |x|$ sur $[1,+\infty[$.

Exercice 13. Montrer que

$$e^x = \lim_{n \to \infty} \sum_{k=0}^n \frac{x^k}{k!}$$

П

Solution:

En appliquant l'inégalité de Taylor-Lagrange à l'ordre n à la fonction exponentielle il vient :

$$\left| e^{x} - \sum_{k=0}^{n} \frac{x^{k}}{k!} \exp^{(k)}(0) \right| \le M \frac{|x|^{n+1}}{(n+1)!}$$

où M désigne un majorant de $|\exp^{(n+1)}| = \exp$ sur le segment [0,x].

Or
$$\frac{|x|^{n+1}}{(n+1)!}$$
 \longrightarrow 0 donc $e^x = \lim_{k \to \infty} \sum_{k=0}^n \frac{x^k}{k!}$

3.3 Intégration par changement de variable

Théorème 3.3. Soit $\varphi:[a,b] \longrightarrow \mathbb{R}$ de classe C^1 .

Soit f continue sur $\varphi([a,b])$ alors :

$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_{a}^{b} f \circ \varphi(x) \times \varphi'(x) dx$$

De façon concrète, on pose $t = \varphi(x)$ ce qui entraı̂ne $\frac{dt}{dx} = \varphi'(x)$ qu'on note par " $dt = \varphi'(x)dx$ ".

Preuve: Soit $J = [\varphi(a), \varphi(b)] \subset \varphi([a, b])$.

Donc f est continue sur J ce qui entraı̂ne qu'elle y admet une primitive F. $F(\varphi(b)) - F(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f(t) dt$ et F' = f.

 $\text{Or } (F \circ \varphi)' = F' \circ \varphi \times \varphi' = f \circ \varphi \times \varphi' \text{ \underline{continue} } \text{ sur } [a,b] \text{ \underline{comme produit et composée d'applications continues sur } [a,b].$

Donc
$$F \circ \varphi(b) - F \circ \varphi(a) = \int_a^b f \circ \varphi(x) \times \varphi'(x) dx$$

d'où
$$\int_{\varphi(a)}^{\varphi(b)} f(t) dt = \int_a^b f \circ \varphi(x) \times \varphi'(x) dx$$

Théorème 3.4. (Changement de variable bijective.)

Soit f une fonction définie sur un intervalle I et $\varphi: J \to I$ une bijection de classe \mathscr{C}^1 . Pour tout $a,b \in I$

$$\int_{a}^{b} f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \cdot \varphi'(t) dt$$

Ici on pose $x = \varphi(t)$ alors par dérivation on obtient $\frac{dx}{dt} = \varphi'(t)$ donc $dx = \varphi'(t) dt$. D'où la substitution

$$\int_{a}^{b} f(x) dx = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} f(\varphi(t)) \cdot \varphi'(t) dt$$

Exemples 3.1.

1.
$$I = \int_0^{\frac{\pi}{4}} \frac{dt}{\cos t} = \int_0^{\frac{\pi}{4}} \frac{\cos t dt}{\cos^2 t} = \int_0^{\frac{\pi}{4}} \frac{\cos t dt}{1 - \sin^2 t}$$

 $\text{Le changement } u = \sin t \text{ donne } I = \int_0^{\frac{\sqrt{2}}{2}} \frac{du}{1-u^2} = \int_0^{\frac{\sqrt{2}}{2}} \frac{\frac{1}{2}}{1+u} + \frac{\frac{1}{2}}{1-u} du = \left(\frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)_0^{\frac{\sqrt{2}}{2}}\right)^{\frac{1}{2}} du = \left(\frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)_0^{\frac{1}{2}}\right)^{\frac{1}{2}} du = \left(\frac{1+u}{1-u}\right)^{\frac{1}{2}} du = \left(\frac{1+u}{1-u$

D'où
$$I = \frac{1}{2} \ln \left(\frac{2 + \sqrt{2}}{2 - \sqrt{2}} \right) = \frac{1}{2} \ln \left(3 + 2\sqrt{2} \right) = \frac{1}{2} \ln \left((1 + \sqrt{2})^2 \right) = \ln(1 + \sqrt{2})$$

2. Calcul de
$$\int_0^{1/2} \frac{x}{(1-x^2)^{3/2}} dx$$
.

Soit le changement de variable $u=\varphi(x)=1-x^2$. Alors $du=\varphi'(x)$ dx=-2x dx. Pour x=0 on a $u=\varphi(0)=1$ et pour $x=\frac{1}{2}$ on a $u=\varphi(\frac{1}{2})=\frac{3}{4}$. Comme $\varphi'(x)=-2x$, φ est une bijection de $[0,\frac{1}{2}]$ sur $[1,\frac{3}{4}]$. Alors

$$\begin{split} \int_0^{1/2} \frac{x \, dx}{(1-x^2)^{3/2}} &= \int_1^{3/4} \frac{\frac{-du}{2}}{u^{3/2}} = -\frac{1}{2} \int_1^{3/4} u^{-3/2} \, du \\ &= -\frac{1}{2} \left[-2u^{-1/2} \right]_1^{3/4} = \left[\frac{1}{\sqrt{u}} \right]_1^{3/4} = \frac{1}{\sqrt{\frac{3}{4}}} - 1 = \frac{2}{\sqrt{3}} - 1. \end{split}$$

3. Calcul de $\int_0^{1/2} \frac{1}{(1-x^2)^{3/2}} dx.$

On effectue le changement de variable $x = \varphi(t) = \sin t$ et $dx = \cos t \, dt$. De plus $t = \arcsin x$ donc pour x = 0 on a $t = \arcsin(0) = 0$ et pour $x = \frac{1}{2}$ on a $t = \arcsin(\frac{1}{2}) = \frac{\pi}{6}$. Comme φ est une bijection de $[0, \frac{\pi}{6}]$ sur $[0, \frac{1}{2}]$,

$$\int_0^{1/2} \frac{dx}{(1-x^2)^{3/2}} = \int_0^{\pi/6} \frac{\cos t \, dt}{(1-\sin^2 t)^{3/2}} = \int_0^{\pi/6} \frac{\cos t \, dt}{(\cos^2 t)^{3/2}}$$
$$= \int_0^{\pi/6} \frac{\cos t}{\cos^3 t} \, dt = \int_0^{\pi/6} \frac{1}{\cos^2 t} \, dt = [\tan t]_0^{\pi/6} = \frac{1}{\sqrt{3}}.$$

4. Calcul de $\int \frac{1}{(1+x^2)^{3/2}} dx$.

Soit le changement de variable $x = \tan t$ donc $t = \arctan x$ et $dx = \frac{dt}{\cos^2 t}$ (la fonction tangente établit une bijection de $1 - \frac{\pi}{2}, + \frac{\pi}{2}$ [sur \mathbb{R}). Donc

$$F = \int \frac{1}{(1+x^2)^{3/2}} dx = \int \frac{1}{(1+\tan^2 t)^{3/2}} \frac{dt}{\cos^2 t}$$
$$= \int (\cos^2 t)^{3/2} \frac{dt}{\cos^2 t} \qquad \text{car } 1 + \tan^2 t = \frac{1}{\cos^2 t}$$
$$= \int \cos t \, dt = [\sin t] = \sin t + c = \sin(\arctan x) + c$$

Donc

$$\int \frac{1}{(1+x^2)^{3/2}} dx = \sin(\arctan x) + c.$$

En manipulant un peu les fonctions on trouverait que la primitive s'écrit aussi $F(x) = \frac{x}{\sqrt{1+x^2}} + c$.

Exercice 14. En effectuant un changement de variables, calculer

1.
$$\int_{1}^{4} \frac{1 - \sqrt{t}}{\sqrt{t}} dt$$
 2. $\int_{1}^{2} \frac{e^{x}}{1 + e^{x}} dx$ **3.** $\int_{1}^{e} \frac{(\ln x)^{n}}{x} dx$, $n \in \mathbb{N}$

Solution:

1. La fonction $t\mapsto \sqrt{t}$ est une bijection de classe C^1 de [1,4] sur [1,2]. On peut donc poser $u=\sqrt{t}$. Lorsque t=1, u=1 et lorsque t=4, u vaut 2. De plus, on a

$$\frac{1-\sqrt{t}}{\sqrt{t}} = \frac{1-u}{u}$$

et

$$u = \sqrt{t} \implies t = u^2 \implies dt = 2udu.$$

On en déduit que

$$\int_{1}^{4} \frac{1 - \sqrt{t}}{t} dt = \int_{1}^{2} \frac{1 - u}{u} 2u du$$

$$= \int_{1}^{2} (2 - 2u) du$$

$$= \left[2u - u^{2} \right]_{1}^{2}$$

$$= -1$$

2. La fonction $x \mapsto e^x$ réalise une bijection de [1,2] sur $[e,e^2]$. Effectuons le changement de variables $u=e^x$ dans l'intégrale, de sorte que $du=e^x dx$.

$$\int_{1}^{2} \frac{e^{x}}{1+e^{x}} dx = \int_{e}^{e^{2}} \frac{du}{1+u} = \left[\ln|1+u| \right]_{e}^{e^{2}} = \ln\left(\frac{1+e^{2}}{1+e} \right).$$

3. La fonction $x \mapsto \ln x$ réalise une bijection de [1,e] sur [0,1]. On pose donc $u = \ln x$ de sorte que $du = \frac{dx}{x}$. De plus, lorsque x vaut 1, u vaut 0 et lorsque x vaut e, u vaut 1. On trouve donc

$$\int_1^e \frac{(\ln x)^n}{x} dx = \int_0^1 u^n du$$
$$= \frac{1}{n+1}.$$

Exercice 15. En effectuant un changement de variables, donner une primitive des fonctions suivantes :

1.
$$x \mapsto \frac{\ln x}{x}$$
 2. $x \mapsto \cos(\sqrt{x})$

Solution :

1. La fonction $x \mapsto \frac{\ln x}{x}$ est définie et continue sur $]0, +\infty[$, intervalle sur lequel on cherche à calculer une primitive. Pour cela, on fait le changement de variables $u = \ln x$, de sorte que $du = \frac{dx}{x}$ et on trouve

$$\int \frac{\ln x}{x} dx = \int u du$$

$$= \frac{1}{2}u^2 + C$$

$$= \frac{1}{2}(\ln x)^2 + C.$$

2. La fonction $x \mapsto \cos(\sqrt{x})$ est définie et continue sur $]0,+\infty[$, intervalle sur lequel on cherche à calculer une primitive. Pour cela, on effectue le changement de variables $u=\sqrt{x}$, de sorte que $x=u^2$ ou encore dx=2udu. On trouve alors

$$\int \cos(\sqrt{x})dx = 2\int u\cos(u)du$$

$$= 2[u\sin u] - 2\int \sin(u)du$$

$$= 2u\sin u + 2\cos u + C$$

$$= 2\sqrt{x}\sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C$$

(on a aussi effectué une intégration par parties).

Exercice 16. Si f est périodique de période T montrer que

$$\int_a^b f(u)du = \int_{a+T}^{b+T} f(v)dv$$

et que

$$\int_{a}^{a+T} f = \int_{0}^{T} f$$

Exercice 17.

1. Si f est paire, montrer que

$$\int_{-a}^{a} f(u) du = 2 \int_{0}^{a} f(u) du$$

2. de même pour f impaire montrer que $: \int_{-a}^{a} f(u) = 0$.

Solution:

$$\int_{-a}^{a} f(u) du = \int_{-a}^{0} f(u) du + \int_{0}^{a} f(u) du$$

d'où par le changement de variable v=-u

П

page:18/ <mark>34</mark>

$$\int_{-a}^{a} f(u)du = -\int_{a}^{0} f(-v)du + \int_{0}^{a} f(u)du$$
$$= \int_{0}^{a} f(v)dv + \int_{0}^{a} f(u)du$$
$$= 2\int_{0}^{a} f(u)du$$

On fait de même pour 2.

3.4 Intégration des fractions rationnelles

Nous savons intégrer beaucoup de fonctions simples. Par exemple toutes les fonctions polynomiales : si $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ alors $\int f(x) dx = a_0x + a_1\frac{x^2}{2} + a_2\frac{x^3}{3} + \dots + a_n\frac{x^{n+1}}{n+1} + c$.

Il faut être conscient cependant que beaucoup de fonctions ne s'intègrent pas à l'aide de fonctions simples. Par exemple si $f(t) = \sqrt{a^2\cos^2 t + b^2\sin^2 t}$ alors l'intégrale $\int_0^{2\pi} f(t) \, dt$ ne peut pas s'exprimer comme somme, produit, inverse ou composition de fonctions que vous connaissez.

Mais de façon remarquable, il y a toute une famille de fonctions que l'on saura intégrer : les fractions rationnelles.

3.4.1 Trois situations de base

On souhaite d'abord intégrer les fractions rationnelles $f(x) = \frac{\alpha x + \beta}{ax^2 + bx + c}$ avec $\alpha, \beta, a, b, c \in \mathbb{R}, \alpha \neq 0$ et $(\alpha, \beta) \neq (0, 0)$.

Premier cas. Le dénominateur $ax^2 + bx + c$ possède deux racines réelles distinctes $x_1, x_2 \in \mathbb{R}$.

Alors f(x) s'écrit aussi $f(x) = \frac{\alpha x + \beta}{a(x - x_1)(x - x_2)}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{x - x_1} + \frac{B}{x - x_2}$. On a donc

$$\int f(x) \, dx = A \ln|x - x_1| + B \ln|x - x_2| + c$$

sur chacun des intervalles $]-\infty, x_1[,]x_1, x_2[,]x_2, +\infty[$ (si $x_1 < x_2$).

Deuxième cas. Le dénominateur $ax^2 + bx + c$ possède une racine double $x_0 \in \mathbb{R}$.

Alors $f(x) = \frac{\alpha x + \beta}{a(x - x_0)^2}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{(x - x_0)^2} + \frac{B}{x - x_0}$. On a alors

$$\int f(x) \, dx = -\frac{A}{x - x_0} + B \ln|x - x_0| + c$$

sur chacun des intervalles $]-\infty, x_0[,]x_0, +\infty[.$

Troisième cas. Le dénominateur $ax^2 + bx + c$ ne possède pas de racine réelle. Voyons comment faire sur un exemple.

Exemple 3.2. Soit $f(x) = \frac{x+1}{2x^2+x+1}$. Dans un premier temps on fait apparaître une fraction du type $\frac{u'}{u}$ (que l'on sait intégrer en $\ln |u|$).

$$f(x) = \frac{(4x+1)\frac{1}{4} - \frac{1}{4} + 1}{2x^2 + x + 1} = \frac{1}{4} \cdot \frac{4x+1}{2x^2 + x + 1} + \frac{3}{4} \cdot \frac{1}{2x^2 + x + 1}$$

On peut intégrer la fraction $\frac{4x+1}{2x^2+x+1}$:

$$\int \frac{4x+1}{2x^2+x+1} dx = \int \frac{u'(x)}{u(x)} dx = \ln |2x^2+x+1| + c$$

Occupons nous de l'autre partie $\frac{1}{2x^2+x+1}$, nous allons l'écrire sous la forme $\frac{1}{u^2+1}$ (dont une primitive est arctan u).

$$\frac{1}{2x^2 + x + 1} = \frac{1}{2(x + \frac{1}{4})^2 - \frac{1}{8} + 1} = \frac{1}{2(x + \frac{1}{4})^2 + \frac{7}{8}}$$
$$= \frac{8}{7} \cdot \frac{1}{\frac{8}{7}2(x + \frac{1}{4})^2 + 1} = \frac{8}{7} \cdot \frac{1}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1}$$

On pose le changement de variable $u=\frac{4}{\sqrt{7}}(x+\frac{1}{4})$ (et donc $du=\frac{4}{\sqrt{7}}dx$) pour trouver

$$\int \frac{dx}{2x^2 + x + 1} = \int \frac{8}{7} \frac{dx}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1} = \frac{8}{7} \int \frac{du}{u^2 + 1} \cdot \frac{\sqrt{7}}{4}$$
$$= \frac{2}{\sqrt{7}} \arctan u + c = \frac{2}{\sqrt{7}} \arctan\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right) + c.$$

Finalement:

$$\int f(x) \, dx = \frac{1}{4} \ln \left(2x^2 + x + 1 \right) + \frac{3}{2\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}} \left(x + \frac{1}{4} \right) \right) + c$$

3.4.2 Intégration des éléments simples

Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle, où P(x),Q(x) sont des polynômes à coefficients réels. Alors la fraction $\frac{P(x)}{Q(x)}$ s'écrit comme somme d'un polynôme $E(x) \in \mathbb{R}[x]$ (la partie entière) et d'éléments simples d'une des formes suivantes :

$$\frac{\gamma}{(x-x_0)^k} \quad \text{ou} \quad \frac{\alpha x + \beta}{(ax^2 + bx + c)^k} \text{ avec } b^2 - 4ac < 0$$

où $\alpha, \beta, \gamma, \alpha, b, c \in \mathbb{R}$ et $k \in \mathbb{N} \setminus \{0\}$.

- 1. On sait intégrer le polynôme E(x).
- 2. Intégration de l'élément simple $\frac{\gamma}{(x-x_0)^k}$.
 - (a) Si k = 1 alors $\int \frac{\gamma \, dx}{x x_0} = \gamma \ln|x x_0| + c_0 \text{ (sur]} \infty, x_0[\text{ ou]} x_0, +\infty[\text{)}.$

(b) Si
$$k \ge 2$$
 alors $\int \frac{\gamma \, dx}{(x-x_0)^k} = \gamma \int (x-x_0)^{-k} \, dx = \frac{\gamma}{-k+1} (x-x_0)^{-k+1} + c_0 \text{ (sur]} -\infty, x_0 \text{ [ou]} x_0, +\infty \text{[)}.$

3. Intégration de l'élément simple $\frac{\alpha x + \beta}{(ax^2 + bx + c)^k}$. On écrit cette fraction sous la forme

$$\frac{\alpha x + \beta}{(ax^2 + bx + c)^k} = \gamma \frac{2ax + b}{(ax^2 + bx + c)^k} + \delta \frac{1}{(ax^2 + bx + c)^k}$$

- (a) Si k = 1, calcul de $\int \frac{2ax + b}{ax^2 + bx + c} dx = \int \frac{u'(x)}{u(x)} dx = \ln|u(x)| + c_0 = \ln|ax^2 + bx + c| + c_0$.
- (b) Si $k \ge 2$, calcul de $\int \frac{2ax + b}{(ax^2 + bx + c)^k} dx = \int \frac{u'(x)}{u(x)^k} dx = \frac{1}{-k+1} u(x)^{-k+1} + c_0 = \frac{1}{-k+1} (ax^2 + bx + c)^{-k+1} + c_0.$
- (c) Si k=1, calcul de $\int \frac{1}{ax^2+bx+c} dx$. Par un changement de variable u=px+q on se ramène à calculer une primitive du type $\int \frac{du}{u^2+1} = \arctan u + c_0$.
- (d) Si $k \ge 2$, calcul de $\int \frac{1}{(ax^2+bx+c)^k} dx$. On effectue le changement de variable u=px+q pour se ramener au calcul de $I_k = \int \frac{du}{(u^2+1)^k}$. Une intégration par parties permet de passer de I_k à I_{k-1} .

Par exemple calculons I_2 . Partant de $I_1 = \int \frac{du}{u^2 + 1}$ on pose $f = \frac{1}{u^2 + 1}$ et g' = 1. La formule d'intégration par parties $\int fg' = [fg] - \int f'g$ donne (avec $f' = -\frac{2u}{(u^2 + 1)^2}$ et g = u)

$$I_{1} = \int \frac{du}{u^{2}+1} = \left[\frac{u}{u^{2}+1}\right] + \int \frac{2u^{2} du}{(u^{2}+1)^{2}} = \left[\frac{u}{u^{2}+1}\right] + 2\int \frac{u^{2}+1-1}{(u^{2}+1)^{2}} du$$
$$= \left[\frac{u}{u^{2}+1}\right] + 2\int \frac{du}{u^{2}+1} - 2\int \frac{du}{(u^{2}+1)^{2}} = \left[\frac{u}{u^{2}+1}\right] + 2I_{1} - 2I_{2}$$

On en déduit $I_2 = \frac{1}{2}I_1 + \frac{1}{2}\frac{u}{u^2 + 1} + c_0$. Mais comme $I_1 = \arctan u$ alors

$$I_2 = \int \frac{du}{(u^2 + 1)^2} = \frac{1}{2}\arctan u + \frac{1}{2}\frac{u}{u^2 + 1} + c_0.$$

3.4.3 Intégration des fonctions trigonométriques

On peut aussi calculer les primitives de la forme $\int P(\cos x, \sin x) dx$ ou de la forme $\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} dx$ quand P et Qsont des polynômes, en se ramenant à intégrer une fraction rationnelle.

Il existe deux méthodes:

- les règles de Bioche sont assez efficaces mais ne fonctionnent pas toujours;
- le changement de variable $t = \tan \frac{x}{2}$ fonctionne tout le temps mais conduit à davantage de calculs. **Les règles de Bioche.** On note $\omega(x) = f(x) \, dx$. On a alors $\omega(-x) = f(-x) \, d(-x) = -f(-x) \, dx$ et $\omega(\pi x) = f(\pi x) \, d(\pi x)$

- Si $\omega(-x) = \omega(x)$ alors on effectue le changement de variable $u = \cos x$.
- Si $\omega(\pi x) = \omega(x)$ alors on effectue le changement de variable $u = \sin x$.
- Si $\omega(\pi + x) = \omega(x)$ alors on effectue le changement de variable $u = \tan x$

Exemple 3.3. Calcul de la primitive
$$\int \frac{\cos x \, dx}{2 - \cos^2 x}$$

On note $\omega(x) = \frac{\cos x \, dx}{2 - \cos^2 x}$. Comme $\omega(\pi - x) = \frac{\cos(\pi - x) \, d(\pi - x)}{2 - \cos^2(\pi - x)} = \frac{(-\cos x) \, (-dx)}{2 - \cos^2 x} = \omega(x)$ alors le changement de variable qui convient est $u = \sin x$ pour lequel $du = \cos x \, dx$. Ainsi :

$$\int \frac{\cos x \, dx}{2 - \cos^2 x} = \int \frac{\cos x \, dx}{2 - (1 - \sin^2 x)} = \int \frac{du}{1 + u^2} = \left[\arctan u\right] = \arctan(\sin x) + c.$$

Le changement de variable $t = \tan \frac{x}{2}$.

Les formules de la « tangente de l'arc moitié » permettent d'exprimer sinus, cosinus et tangente en fonction de tan $\frac{2}{3}$

Avec
$$t = \tan \frac{x}{2}$$
 on a
$$\cos x = \frac{1-t^2}{1+t^2} \qquad \sin x = \frac{2t}{1+t^2} \qquad \tan x = \frac{2t}{1-t^2}$$
 et
$$dx = \frac{2 dt}{1+t^2}.$$

Exemple 3.4. Calcul de l'intégrale $\int_{-\pi/2}^{0} \frac{dx}{1-\sin x}$.

Le changement de variable $t = \tan \frac{x}{2}$ définit une bijection de $[-\frac{\pi}{2}, 0]$ vers [-1, 0] (pour $x = -\frac{\pi}{2}$, t = -1 et pour x = 0, t = 0). De plus on a $\sin x = \frac{2t}{1+t^2}$ et $dx = \frac{2 dt}{1+t^2}$.

$$\int_{-\frac{\pi}{2}}^{0} \frac{dx}{1 - \sin x} = \int_{-1}^{0} \frac{\frac{2dt}{1 + t^{2}}}{1 - \frac{2t}{1 + t^{2}}} = 2 \int_{-1}^{0} \frac{dt}{1 + t^{2} - 2t}$$
$$= 2 \int_{-1}^{0} \frac{dt}{(1 - t)^{2}} = 2 \left[\frac{1}{1 - t} \right]_{-1}^{0} = 2 \left(1 - \frac{1}{2} \right) = 1$$

4 Intégrales généralise ou impropres

4.1 Primitive d'une fonction c.p.m

Définition 4.1. Soit f une fonction c.p.m sur un intervalle I. On appelle primitive de f sur I toute fonction $F: I \to \mathbb{K}$ qui vérifie :

- (i) F est continue sur I
- (ii) F est dérivable en tout point a de continuité de f et F'(a) = f(a)

Théorème 4.1. Deux primitives F et G d'une même fonctions c.p.m f sur I diffèrent d'une constante F = G + c avec $c \in \mathbb{K}$ constante

Théorème 4.2. Soit f fonction c.p.m sur I, et $a \in I$. on pose $F(x) = \int_a^x f(t)dt$ $(\forall x \in I)$. Alors

- 1. F set une primitive de f sur I.
- 2. Si G est une primitive de f sur I alors $G(x) = c + \int_a^x f(t) dt$ $(\forall x \in I)$ avec $c \in \mathbb{K}$.

Corollaire 4.1. Soit f fonction c.p.m sur I et soit $(x_0, y_0) \in I \mathbb{K}$. Alors

- 1. f admet une infinité de primitives sur I.
- 2. Il existe une unique primitive G de f sur I telle que $G(x_0) = y_0$. Elle donnée par

$$\forall x \in I, \qquad G(x) = y_0 + \int_{x_0}^x f$$

Corollaire 4.2. Soit f fonction c.p.m sur I et F une primitive de de f sur I. Alors

$$\forall (a,b) \in I^2 \qquad \int_a^b f(t)dt = F(b) - F(a)$$

Théorème 4.3. Soit f une fonction **continue** sur I, et a,b deux fonctions de classe C^1 sur un intervalle J à valeurs dans I. Alors la fonction définie par :

$$\forall x \in J, \quad F(x) = \int_{a(x)}^{b(x)} f(t)dt$$

est de classe C^1 sur J et

$$\forall x \in J, \quad F'(x) = b'(x)f(b(x)) - a'(x)f(a(x))$$

4.2 Généralités sur les intégrales "impropres"

Dans toute cette section I un intervalle infini de $\mathbb R$ et

$$a=\inf(I)\in\mathbb{R}\cup\{-\infty\}\quad\text{et}\quad b=\sup(I)\in\mathbb{R}\cup\{+\infty\}$$

Définition 4.2. Soit $f: I \to \mathbb{K}$ une fonction c.p.m et F une primitive de f sur I

• On dit que f admet une intégrale généralisée convergente sur I ou que l'intégrale impropre $\int_a^b f$ est convergente si F admet des limites finies en a^+ et b^- .

Dans ce cas on écrit

$$\int_{a}^{b} f = [F(x)]_{a}^{b} = \lim_{x \to b^{-}} F(x) - \lim_{x \to a} F(x)$$

• $\int_a^b f(t)dt$ est dite divergente si elle n'est pas convergente

Remarque 4.1. La nature et la valeur de l'intégrale généralisée convergente ne dépend pas de la primitive de f choisie

Exemples 4.1. $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx \text{ est convergent }.$

En effet $F(x) = \arctan(x)$, est une primitive de $x \mapsto \frac{1}{1+x^2}$ sur \mathbb{R} , admet des limite finies en $\pm \infty$ donc l'intégrale est convergente et on a :

$$\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \left[\arctan(x)\right]_{-\infty}^{+\infty} = \lim_{x \to +\infty} \arctan(x) - \lim_{x \to -\infty} \arctan(x) = \pi$$

Proposition 4.1. Soit $f \in C_M(I, \mathbb{K})$

1. Si I = [a, b] avec $-\infty < a < b \le +\infty$ alors

l'intégrale impropre $\int_a^b f$ converge si et seulement si $\lim_{x\to b^-} \int_a^x f(t)dt$ existe et est finie. On a, en cas de convergence :

$$\int_{a}^{b} f(t)dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t)dt$$

2. Si I =]a, b] avec $-\infty \le a < b < +\infty$ alors

l'intégrale impropre $\int_a^b f$ converge si et seulement si $\lim_{x \to a^+} \int_x^b f(t) dt$ existe et on a, en cas de convergence :

$$\int_{a}^{b} f(t)dt = \lim_{x \to a^{+}} \int_{x}^{b} f(t)dt$$

3. Si I =]a, b[avec $-\infty \le a < b \le +\infty$ et $c \in]a, b[$ alors

 $\int_a^b f$ est convergente si et seulement si $\int_a^c f$ et $\int_c^b f$ sont toutes les deux convergentes, et on a alors

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Remarques 4.1.

1. Si $f \in C_M([a,b])$ alors on a bien $\int_a^b f(t)dt = \lim_{x \to b^-} \int_a^x f(t)dt = \lim_{x \to a^+} \int_x^b f(t)dt$.

La notation " $\int_a^b f(t)dt$ " pour les intégrales impropres est cohérente. C'est un prolongement de la théorie sur l'intégration sur un segment.

2. Si f est c.pm sur]a,b[ou sur]a,b[avec $a,b\in\mathbb{R}$ et admet un prolongement continue sur [a,b], l'intégrale $\int_a^b f(t) \, \mathrm{d}t$ est considérée comme intégrale d'une fonction continue par morceaux sur un segment.

Par exemple $\int_0^1 t \ln(t) dt$ est convergente puisque la fonction $t \mapsto t \ln(t)$ est continue sur]0,1] et prolongeable par continuité sur [0,1].

Exemples fondamentaux 4.3

Proposition 4.2. on a

 $\int_0^1 \ln t \, dt \quad \mathbf{est \ convergente} \quad \mathbf{et} \qquad \int_0^1 \ln t \, dt = 1$

ln est continue sur]0,1] et $\int_{x}^{1} \ln t \, dt = [t \ln t - t]_{x}^{1} = 1 + x - x \ln x \xrightarrow[x \to 0]{} 1$, D'où le résultat.

Proposition 4.3. Soit $\alpha \in \mathbb{R}$.

 $\int_0^{+\infty} e^{-\alpha t} dt \quad \text{est convergente si, et seulement si} \quad \alpha > 0.$

et on a

 $\forall \alpha > 0, \qquad \int_0^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}.$

• Si
$$\alpha > 0$$
, $\int_0^x e^{-\alpha t} dt = \frac{1 - e^{-\alpha x}}{\alpha} \xrightarrow[x \to +\infty]{} \frac{1}{\alpha}$.
• Si $\alpha < 0$, $\int_0^x e^{-\alpha t} dt = \frac{1 - e^{-\alpha x}}{\alpha} \xrightarrow[x \to +\infty]{} +\infty$.
• Si $\alpha = 0$, $\int_0^x e^{-\alpha t} dt = x \xrightarrow[x \to +\infty]{} +\infty$.

• Si
$$\alpha < 0$$
, $\int_0^x e^{-\alpha t} dt = \frac{1 - e^{-\alpha x}}{\alpha} \xrightarrow{x \to +\infty} +\infty$.

• Si
$$\alpha = 0$$
, $\int_0^x e^{-\alpha t} dt = x \xrightarrow[x \to +\infty]{} +\infty$

D'où le résultat.

Proposition 4.4 (intégrales de Riemann). Soit $\alpha \in \mathbb{R}$

 $-\int_{1}^{+\infty} \frac{dt}{t^{\alpha}} \text{ converge si et seulement si } \alpha > 1$ $-\int_{0}^{1} \frac{dt}{t^{\alpha}} \text{ converge si et seulement si } \alpha < 1$

Preuve: Provient du calcul direct

$$\int_{x}^{1} \frac{dt}{t^{\alpha}} = \begin{cases} \frac{1 - x^{1 - \alpha}}{1 - \alpha} & \text{si } \alpha \neq 1 \\ \ln x & \text{sinon} \end{cases}$$

et $x\mapsto x^{\beta}$ admet une limite en 0 si et seulement si $\beta\geq 0$ et une limite en $+\infty$ si et seulement si $\beta\leq 0$.

$$\begin{split} & - \text{ Notamment, } \int_0^{+\infty} \frac{dt}{t^{\alpha}} \text{ n'est jamais convergente.} \\ & - \int_1^{+\infty} \frac{dt}{t} \text{ et } \int_0^1 \frac{dt}{t} \text{ sont divergentes.} \\ & - \int_0^{+\infty} \frac{dt}{t^{\alpha}} \text{ est divergente quelque soit } \alpha \end{split}$$

$$- \int_{1}^{+\infty} \frac{dt}{t} \operatorname{et} \int_{0}^{1} \frac{dt}{t} \operatorname{sont divergentes.}$$

Remarque 4.3. De la même manière, pour $a, b \in \mathbb{R}$, $\int_a^b \frac{dt}{(a-t)^{\alpha}}$ converge si et seulement si $\alpha < 1$.

On a en effet $\int_{x}^{b} \frac{dt}{(a-t)^{\alpha}} = \begin{cases} \frac{(a-x)^{1-\alpha} - (a-b)^{1-\alpha}}{1-\alpha} & \text{si } \alpha \neq 1 \\ \frac{a-x}{a-b} & \text{sinon} \end{cases}$

4.4 Propriétés des intégrales convergentes

En utilisant les propriétés de l'intégrale sur un segment et en passant à la limites, on montre aisément :

Proposition 4.5. Soient $f,g \in C_M(I,\mathbb{K})$ telles que $\int_a^b f$ et $\int_a^b g$ convergent, et soit $\lambda \in \mathbb{K}$.

1. **Linéarité** : $\int_a^b (\lambda f + \mu g)$ est convergente et on a

$$\forall \lambda, \mu \in \mathbb{R}, \int_{a}^{b} (\lambda f + \mu g) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

2. **Relation de Chasles :** Pour tout $c \in I$ les intégrales $\int_a^c f(x) dx$ et $\int_c^b f(x) dx$ sont convergentes et on a

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

3. Si $\mathbb{K} = \mathbb{R}$, et $f \le g$ sur I alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

Attention 4.1. Pour tout les autres propriétés , notamment l'intégration par partie et changement de variable , il faut se placer sur un segment et passer à la limite.

Remarque 4.4. Si $\int_a^b f$ converge et $\int_a^b g$ diverge alors $\int_a^b (f+g)$ diverge, et si les deux divergent on ne peut rien dire (CV+CV=CV, CV+DV=DV et DV+DV=?).

Attention 4.2. Si $\int_a^c f$ ou $\int_c^b f$ divergent alors $\int_a^b f$ diverge par définition de l'intégrale.

On est pas dans le cas indéterminé DV+DV.

4.5 Cas des fonctions positives.

Proposition 4.6. Soit $f: I \to \mathbb{R}$ c.p.m , **positive**.

1. Si I = [a, b[alors

$$\int_a^b f \operatorname{est \ convergente} \quad \Longleftrightarrow \quad F: x \mapsto \int_a^x f \quad \operatorname{est \ major\'ee}$$

En cas de convergence on a $\int_a^b f = \sup_{x \in I} \int_a^x f$

2. Si I =]a, b] alors

$$\int_a^b f \operatorname{est convergente} \iff F : x \mapsto \int_x^b f \operatorname{est major\'ee}$$

En cas de convergence on a $\int_a^b f = \sup_{x \in I} \int_x^b f$

Remarques 4.2. Si f est positive sur I et $\int_a^b f$ est divergente on pose $\int_a^b f = +\infty$

Preuve : Supposons I = [a, b[alors F est croissante ,puisque Si $a \le x \le y < b$ alors $F(y) - F(x) = \int_{x}^{y} f \ge 0$,

 $\operatorname{donc} F$ admet une limite finie en b si et seulement si F majorée sur I et on a alors

$$\int_{a}^{b} f = \lim_{x \to b^{-}} F(x) = \sup_{I} (F)$$

En cas de divergence
$$\lim_{x \to b^-} F(x) = +\infty$$
 ce qui justifie $\int_a^b f = +\infty$

Proposition 4.7. Soient $f,g:I\to\mathbb{R}$ **positives** et continues par morceaux sur I=[a,b[(Resp : I=]a,b]) telles que $0\le f\le g$. Alors

- 1. Si $\int_a^b g$ converge, alors $\int_a^b f$ converge.
- 2. Si $\int_a^b f$ diverge, alors $\int_a^b g$ diverge.

Preuve: Supposons I = [a, b[. Considérons $F : x \mapsto \int_a^x f$ et $G : x \mapsto \int_a^x g$. alors $\forall x \in [a, b[$, $0 \le F(x) \le G(x)$

Donc si $\int_a^b g$ converge, alors G est majorée sur I par suite F est aussi majorée sur I . D'où $\int_a^b f$ converge.

Un raisonnement par contraposée donne l'autre assertion.

Exemples 4.2.

1. $\int_0^{+\infty} e^{-x^2} dx$ converge

En effet, $x \mapsto e^{-x^2} \in C^0(\mathbb{R}_+, \mathbb{R})$, De plus pour x > 1 on a $0 \le e^{-x^2} \le e^{-x}$ et on sait que $\int_0^{+\infty} e^{-x}$ est convergente, donc $\int_0^{+\infty} e^{-x^2} dx$ converge.

2. $\int_0^1 \frac{\cosh x}{x^2} dx$ diverge.

En effet, $x \mapsto \frac{\operatorname{ch} x}{x^2} \in C^0(]0,1],\mathbb{R})$. De plus pour $0 < x \le 1$ on a $0 \le \frac{1}{x^2} \le \frac{\operatorname{ch} x}{x^2}$, et on sait que $\int_0^1 \frac{1}{x^2} dx$ est divergente, donc $\int_0^1 \frac{\operatorname{ch} x}{x^2} dx$ est divergente.

Proposition 4.8. Soient f,g positives et CPM sur I = [a,b[(Resp : I =]a,b]) telles que $f = \underset{b}{O}(g)$ (Resp $f = \underset{a}{O}(g)$), alors

- 1. Si $\int_a^b g$ est convergente alors $\int_a^b f$ est convergente.
- 2. Si $\int_a^b f$ est divergente alors $\int_a^b g$ est divergente.

Preuve: supposons que $\int_a^b g$ est convergente. on a f = Q(g) alors : $\exists M > 0, \exists c \in]a, b[, \forall x \in]c, b[, 0 \le f(x) \le Mg(x)]$

On déduit d'après le théorème précédent que $\int_c^b f$ converge puisque $\int_c^b Mg$ converge.

Donc $\int_a^b f$ converge.

Corollaire 4.3. Soient f,g positives et CPM sur I = [a,b[(Resp : I =]a,b]) telles que $f = \underset{b}{o}(g)$ (Resp $f = \underset{a}{o}(g)$), alors

- 1. Si $\int_a^b g$ est convergente alors $\int_a^b f$ est convergente.
- 2. Si $\int_a^b f$ est divergente alors $\int_a^b g$ est divergente.

Preuve: Si f = o(g) alors f = O(g) et le résultat est obtenue par la proposition précédente.

page:26/ <mark>34</mark>

Proposition 4.9. Soient f,g positives et CPM sur I = [a,b[(Resp : I =]a,b]) telles que $f \underset{b}{\sim} (g)$ (Resp $f \underset{a}{\sim} (g)$), alors $\int_a^b f \text{ et } \int_a^b g \text{ sont de même nature.}$

Si $f \sim g$ alors f = O(g) et g = O(f). On applique la proposition précédente.

1.
$$\int_e^{+\infty} \ln\left(1 + \frac{1}{\sqrt{x}}\right) dx \text{ diverge. En effet } x \mapsto \ln\left(1 + \frac{1}{\sqrt{x}}\right) \in C^0([e, +\infty[, \mathbb{R}) \text{ et } \ln\left(1 + \frac{1}{\sqrt{x}}\right) \underset{+\infty}{\sim} \frac{1}{\sqrt{x}} \text{ et } \int_e^{+\infty} \frac{dx}{\sqrt{x}} \text{ diverge.}$$

2.
$$\int_0^1 \frac{dt}{\sqrt{t(1-t)}}$$
 est convergente, en effet :

• On a
$$t \mapsto \frac{1}{\sqrt{t(1-t)}} \in C^0(]0,1[,\mathbb{R}).$$

• au voisinage de 0 on a :
$$\frac{1}{\sqrt{t(1-t)}} \sim \frac{1}{\sqrt{t}} \operatorname{et} \int_0^{\frac{1}{3}} \frac{dt}{\sqrt{t}} \operatorname{converge donc} \int_0^{\frac{1}{3}} \frac{dt}{\sqrt{t(1-t)}} \operatorname{est convergente}.$$

• au voisinage de 1 on a :
$$\frac{1}{\sqrt{t(1-t)}} \approx \frac{1}{\sqrt{1-t}}$$
. et l'intégrale $\int_{\frac{1}{3}}^{1} \frac{dt}{\sqrt{1-t}}$ convergent puisque $\frac{1}{2} < 1$, donc $\int_{\frac{1}{3}}^{1} \frac{dt}{\sqrt{t(1-t)}}$ est convergente.

d'où
$$\int_0^1 f$$
 converge puisque $\int_{\frac{1}{3}}^1 \frac{dt}{\sqrt{t(1-t)}}$ et $\int_0^{\frac{1}{3}} \frac{dt}{\sqrt{t(1-t)}}$ le sont.

Autrement : Une primitive de la fonction sur]0,1[est $t\mapsto \arcsin(2t-1)$. On retrouve alors le résultat et même la valeur de cette intégrale.

3. pour
$$n \in \mathbb{N}$$
, $\int_{1}^{+\infty} \frac{e^{-\sqrt{t}}}{(t^2+1)^n} dt$ converge.

En effet,
$$t \mapsto \frac{e^{-\sqrt{t}}}{(t^2+1)^n} \in C^0([1,+\infty[)]$$
. De plus $\frac{e^{-\sqrt{t}}}{(t^2+1)^n} \underset{+\infty}{\sim} \frac{e^{-\sqrt{t}}}{t^{2n}}$.

D'après le théorème de croissance comparée,
$$\lim_{x \to +\infty} t^2 \frac{e^{-\sqrt{t}}}{t^{2n}} = 0$$
.

D'où $\frac{e^{-\sqrt{t}}}{t^{2n}} = o \left(\frac{1}{t^2}\right)$. On en déduit le résultat d'après le théorème de Riemann et de comparaison d'intégrales de

4.
$$I = [1, +\infty[$$
 de $f : x \mapsto \frac{1}{x(x+1)}$, continue sur I .

On a
$$\forall x \in I$$
, $0 \le f(x) \le \frac{1}{x^2}$. Donc $\int_1^{+\infty} f$ est convergent.

Une décomposition en éléments simples donne
$$\frac{1}{r(r+1)} = \frac{1}{r} - \frac{1}{r+1}$$

Une décomposition en éléments simples donne
$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$$

Attention 4.3. On ne peut pas écrire $\int_{1}^{+\infty} \frac{dt}{t(t+1)} = \int_{1}^{+\infty} \frac{dt}{t} - \int_{1}^{+\infty} \frac{dt}{t+1}$ puisque les intégrales de droite divergent!!

Il faut donc intégrer sur un segment et passer à la limite :

$$\int_{1}^{x} \frac{dt}{t(t+1)} = \int_{1}^{x} \frac{dt}{t} - \int_{1}^{x} \frac{dt}{t+1}$$
$$= \left[\ln(t) - \ln(1+t)\right]_{1}^{x}$$
$$= \ln 2 - \ln\left(1 + \frac{1}{x}\right) \xrightarrow[x \to +\infty]{} \ln 2.$$

D'où
$$\int_{1}^{+\infty} \frac{dt}{t(t+1)} = \ln 2$$
.

Exemples 4.4. un exemple ultra-classique : intégrale de Bertrand $\int_{e}^{+\infty} \frac{dt}{t^{\alpha} \ln^{\beta} t}$

$$t\mapsto \frac{d\,t}{t^{\alpha}\ln^{\beta}t}$$
 est continue sur $[e,+\infty[$ et positive

— Si $\alpha > 1$ alors en considérant $\gamma \in]1, \alpha[$ on a $\frac{1}{t^{\alpha} \ln^{\beta} t} = \int_{+\infty}^{\infty} \left(\frac{1}{t^{\gamma}}\right)$.

D'où la convergence de l'intégrale d'après les règles de Riemann et par comparaison d'intégrales de fonctions positions.

— Si $\alpha < 1$ alors $\frac{1}{t} = o \left(\frac{1}{t^{\alpha} \ln^{\beta} t} \right)$.

D'où la divergence de l'intégrale d'après les règles de Riemann et par comparaison d'intégrales de fonctions positives.

— si $\alpha = 1$, un changement de variable $u = \ln t$ montre que $\int_{e}^{+\infty} \frac{dt}{t \ln^{\beta} t}$ et $\int_{1}^{+\infty} \frac{du}{u^{\beta}}$ ont même nature.

D'où la convergence de l'intégrale si et seulement si $\beta > 1$.

Théorème 4.4. (Comparaison série-intégrale.) Soit f continue, positive et décroissante sur $[a, +\infty[$.

Alors $\sum_{n\geq a} f(n)$ converge si et seulement si $\int_a^{+\infty} f$ converge.

Calcul d'intégrales 4.6

4.6.1 Changement de variable

Proposition 4.10 (Changement de variable). Soit φ une bijection de $]\alpha,\beta[$ vers un intervalle]a,b[de classe C^1 . Alors $\int_a^b f(t)dt$ converge si et seulement si $\int_a^\beta f(\varphi(x)) |\varphi'(x)| dx$ converge.

$$\int_a^b f(t)\,dt = \int_\alpha^\beta f\big(\varphi(x)\big)\,\big|\varphi'(x)\big|\,dx = \begin{cases} \int_\alpha^\beta f\circ\varphi(x)\times\varphi'(x)\,dx & \text{Si }\varphi\text{ est croissante,}\\ -\int_\alpha^\beta f\circ\varphi(x)\times\varphi'(x)\,dx & \text{Si }\varphi\text{ est décroissante.} \end{cases}$$

On suppose $f \in CPM(]a,b[)$. Pour simplifier, on suppose φ croissante.

De part le cours sur les fonctions monotone, on a $\lim \alpha \varphi(x) = a$ et $\lim_{y \to \beta} \varphi(y) = b$ et $\lim_{x \to a} \varphi^{-1}(x) = \alpha$ et $\lim y \to b \varphi^{-1}(y) = \beta$ (φ^{-1} est également

Si
$$\int_a^b f(t)dt$$
 converge : Pour tout $x, y \in]\alpha, \beta[$ on a $\int_x^y f \circ \varphi \times \varphi' = \int_{\varphi(x)}^{\varphi(y)} f \xrightarrow[x \to a, y \to b]{} \int_a^b f$.

$$\operatorname{Si} \int_{a}^{\beta} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f = \int_{\varphi^{-1}(x)}^{\varphi^{-1}(y)} f \circ \varphi \times \varphi' \xrightarrow[x \to a, y \to b]{} \int_{a}^{b} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f = \int_{\varphi^{-1}(x)}^{\varphi^{-1}(y)} f \circ \varphi \times \varphi' \xrightarrow[x \to a, y \to b]{} \int_{a}^{b} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f = \int_{\varphi^{-1}(x)}^{\varphi^{-1}(y)} f \circ \varphi \times \varphi' \xrightarrow[x \to a, y \to b]{} \int_{a}^{b} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f = \int_{\varphi^{-1}(x)}^{\varphi^{-1}(y)} f \circ \varphi \times \varphi' \xrightarrow[x \to a, y \to b]{} \int_{a}^{b} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f = \int_{\varphi^{-1}(x)}^{\varphi^{-1}(y)} f \circ \varphi \times \varphi' \xrightarrow[x \to a, y \to b]{} \int_{a}^{b} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f \circ \varphi \times \varphi' \xrightarrow{x \to a, y \to b} \int_{a}^{b} f(\varphi(x)) dt \operatorname{converge} : \int_{x}^{y} f \circ \varphi \times \varphi' \xrightarrow{x \to a, y \to b} \int_{a}^{b} f(\varphi(x)) dx \operatorname{converge} : \int_{x}^{y} f(\varphi(x)) dx \operatorname{converge} : \int_{x}^{y}$$

Si φ est décroissante, rien ne change mais il faut inverser les limites

Exemple 4.1.
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{dx}{\sin^2 x} = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\tan^2 x} \cdot \frac{dx}{\cos^2 x} = \int_{1}^{+\infty} \frac{du}{u^2} = 1$$

à l'aide du changement bijectif $u = \tan x$ d'où $du = (1 + \tan^2(x))dx = \frac{dx}{\cos^2(x)}$

Exemple 4.2. $f: x \mapsto \frac{1}{\ln^{\beta} r}$ est intégrable sur]1,e] si et seulement si $\beta < 1$.

En effet, elle y est continue et le changement de variable $u = \ln x$ montrer que f est intégrable sur [1,e] si et seulement si t - $\frac{e^u}{u^\beta} \sim \frac{1}{u^\beta}$ l'est sur [0,1].

Exemple 4.3. $\int_a^b \frac{dt}{(t-a)^{\alpha}}$ à même nature que $\int_0^{b-a} \frac{du}{u^{\alpha}}$ (changement variable bijectif u=x-a)

page:28/34

4.6.2 Intégration par parties

Proposition 4.11. Soit f,g de classe $C^1(]a,b[)$ tel que le produit fg admet une limite finie en a et en b.

Alors $\int_a^b f(t)g'(t)dt$ et $\int_a^b f(t)g(t)dt$ ont même nature et de plus

$$\int_{a}^{b} f(t)g'(t)dt = [fg]_{a}^{b} - \int_{a}^{b} f'(t)g(t)dt$$
$$= \lim_{b} (fg) - \lim_{a} (fg) - \int_{a}^{b} f'(t)g(t)dt$$

Preuve:

Pour $x, y \in]a, b[, f$ étant C^1 sur [x, y], on peut écrire

$$\int_{x}^{y} f(t)g'(t)dx = \left[fg\right]_{x}^{y} - \int_{x}^{y} f'(t)g(t)dt$$

Il suffit de passer cette relation à la limite, l'égalité des natures provenant des règles CV+CV=CV et CV+DV=DV.

Exercice 18. Soit de la fonction Gamma d'Euler définie par :

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

- 1. Donner le domaine de définition de Γ
- 2. Montrer que $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$.
- 3. Déduire que $\forall n \in \mathbb{N}, \Gamma(n+1) = n!$

Solution:

 $\forall x \in \mathbb{R}^*_+, t \mapsto t^{x-1}e^{-t} = e^{(x-1)\ln t - t}$ est continue sur $]0, +\infty[$ de plus

$$t^{x-1}e^{-t} \underset{0}{\sim} t^{x-1}$$
 et $|t^{x-1}e^{-t}| = \underset{+\infty}{o} \left(\frac{1}{t^2}\right)$.

On en déduit que Γ est définie si et seulement si x-1>-1 sur $\mathbb{R}_+^*.$

On a $\lim_{x\to\infty} t^x e^{-t} = 0$ et $\lim_{x\to 0} t^x e^{-t} = 0$ puisque x>0 d'où

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} \, dt = \left[-t^x e^{-t} \right]_0^x + x \int_0^{+\infty} t^{x-1} e^{-t} \, dt = x \Gamma(x)$$

Le troisième se montre par récurrence

5 Intégrabilité

5.1 Intégrale absolument convergente.

Définition 5.1. Soit f continue par morceaux sur I à valeurs dans K.

On dit que $\int_I f$ est absolument convergente, si $\int_I |f|$ converge.

Théorème 5.1. Une intégrale absolument convergente est convergente et on a :

$$\left| \int_{I} f \right| \leq \int_{I} |f|$$

Preuve:

page:29/ <mark>34</mark>

П

cas réel : On a $0 \le f + |f| \le 2|f|$. On en déduit que l'intégrale $\int_a^b f + |f|$ est convergente.

Mais comme f = (f + |f|) - |f|, on en déduit que $\int_a^b f$ converge.

 $\textbf{cas complexe:} \texttt{Comme} \ |\text{Re}(f)| \leq |f| \ \text{et} \ |\text{Im}(f)| \leq |f|, \ \text{On en d\'eduit que} \ |\text{Re}(f)| \ \text{et} \ |\text{Im}(f)| \ \text{on t des int\'egrales convergentes}.$

D'après le cas réel, on en déduit que Re(f) et Im(f) ont des intégrales convergentes, d'où le résultat.

Exemples 5.1.

1. $\int_{0}^{+\infty} \frac{e^{it}}{1+t^2} dt \text{ est absolument convergente donc convergente puisque } \forall t \geq 0, \left| \frac{e^{it}}{1+t^2} \right| = \frac{1}{1+t^2} \text{ et } \int_{0}^{+\infty} \frac{1}{1+t^2} dt = \lim_{x \to +\infty} \arctan(x) = \frac{1}{2} \left| \frac{e^{it}}{1+t^2} \right| = \frac{1}{1+t^2} \left| \frac{e^{it}}{1+t^2} \right| = \frac{1}{1+$

$$2. \ \int_{1}^{+\infty} \frac{\sin^3 x}{x^2} \, dx \ \text{est convergente puisque} \ \forall \, x \geq 1, \ \left| \frac{\sin^3 x}{x^2} \right| \leq \frac{1}{x^2} \ \text{et} \int_{1}^{+\infty} \frac{1}{x^2} \, dt \ \text{converge}$$

Ainsi, par comparaison d'intégrales de fonctions positives l'intégrale est absolument convergente donc convergente.

Remarque 5.1. Pour montrer qu'une intégrale est convergente, on peut souvent montrer qu'elle est absolument convergente. On dispose alors des propositions pour les fonctions positives (majoration, O, o, \sim).

Attention 5.1. La réciproque est fausse comme le montre l'exemple ci-dessous.

Exemples 5.2. (Important:)
$$\int_0^{+\infty} \frac{\sin t}{t} dt.$$

La fonction est prolongeable par continuité sur $[0, +\infty[$ car $\sin t \sim t.$ De plus, comme $\lim_{t\to +\infty} \frac{\cos t}{t} = 0$ et que $\lim_{t\to 1} \frac{\cos t}{t} = 0$ cos 1, on en déduit que

$$\int_1^{+\infty} \frac{\sin t}{t} \, dt = \left(-\frac{\cos t}{t} \right)^{+\infty} - \int_1^{+\infty} \frac{\cos t}{t^2} \, dt = \cos(1) - \int_1^{+\infty} \frac{\cos t}{t^2} \, dt$$

 $\text{Comme } \forall \, t \geq 1, \, 0 \leq \left| \frac{\cos t}{t^2} \right| \leq \frac{1}{t^2}, \text{l'intégrale } \int_1^{+\infty} \frac{\cos t}{t^2} \, dt \text{ est ainsi absolument convergente donc convergente.} \int_0^{+\infty} \frac{\sin t}{t} \, dt \text{ converge.}$

De plus, on a
$$\forall t > 0$$
, $\left| \frac{\sin t}{t} \right| \ge \frac{\sin^2 t}{t} = \frac{1}{2t} - \frac{\cos(2t)}{2t} \ge 0$.

On montre comme précédemment que $\int_0^{+\infty} \frac{\cos(2t)}{t} dt$ converge et de plus $\int_0^{+\infty} \frac{dt}{t}$ diverge. D'où la divergence de $\int_0^{+\infty} \frac{|\sin t|}{t} dt$.

Donc l'intégrale n'est pas absolument convergente.

Autrement : Pour $n \in \mathbb{N}$,

$$\int_0^{n\pi} \frac{|\sin t|}{t} dt = \sum_{k=0}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t} dt \ge \sum_{k=0}^{n-1} \int_0^{\pi} \frac{\sin t}{(k+1)\pi} dt = \sum_{k=0}^{n-1} \frac{2}{(k+1)\pi} = \frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k} \longrightarrow +\infty$$

D'où le résultat.

5.2 Fonctions intégrables

Définition 5.2. Soit f continue par morceaux sur un intervalle I d'extrémités $a = \inf I$ et $b = \sup I$.

- On dit que f est intégrable sur I si $\int_a^b |f|$ est convergente ou encore $\int_a^b f$ est absolument convergente.
- On note $L^1(I,K)$ l'ensemble des fonctions intégrables sur I.
- Si f est intégrable sur I, le scalaire $\int_a^b f(t) \, dt$, s'appelle intégrale de f sur I et se note : $\int_I f$

Remarque 5.2. Si f est **positive** sur I alors f est intégrable sur I si et seulement si $\int_a^b f(t)dt$, est convergente et dans ce cas

$$\int_{I} f = \int_{a}^{b} f(t) dt$$

Exemples 5.3.

- 1. La fonction $x \to \frac{1}{x^{\alpha}}$ est intégrable sur $[1, +\infty[$ si et seulement si $\alpha > 1$.
- 2. La fonction $x \to \frac{1}{x^{\alpha}}$ est intégrable sur]0,1] si et seulement si $\alpha < 1$.
- 3. La fonction $x \to e^{-\alpha x}$ est intégrable sur $[1, +\infty[$ si et seulement si $\alpha > 0$
- 4. La fonction $x \to \ln(x)$ est intégrable sur]0,1].

Attention 5.2. $t\mapsto \frac{\sin t}{t}$ n'est pas intégrable sur $[1,+\infty[$ mais possède une intégrale impropre convergente sur $[1,+\infty[$.Ainsi

Si f n'est pas positive la convergence de l'intégrale n'implique pas l'intégrabilité de la fonction

Proposition 5.1.

 $L^1(I,K)$ est un sous-espace vectoriel.

Notamment, une combinaison linéaire de fonctions intégrables est intégrable.

Preuve: $|\lambda f + \mu g| \le |\lambda| |f| + |\mu| |g|$. Mais $|\lambda| |f| + |\mu| |g|$ est intégrable, donc $|\lambda f + \mu g|$ l'est.

Attention 5.3. Le produit de fonctions intégrables n'est plus intégrable à priori. Il suffit de considérer le produit de la fonction $t \mapsto t^{-\frac{1}{2}}$ par elle même sur [0,1].

Proposition 5.2. Soient $f, g \in L^1(I, K)$ et $\lambda \in \mathbb{K}$. Alors on a

1.
$$\int_{I} (f + \lambda g) = \int_{I} f + \lambda \int_{I} g.$$

2.
$$\left| \int_{I} f \right| \leq \int_{I} |f|$$
.

Proposition 5.3. (Relation de Chasles.)

Soit $f \in C_M(I,K)$ et $c \in I$. Alors f est intégrable sur I si et seulement si f est intégrable sur $I \cap [c; +\infty[$ et sur $I \cap] -\infty; c]$ et dans ce cas

$$\int_I f = \int_{I\cap]-\infty;c]} f + \int_{I\cap[c;+\infty[} f$$

Proposition 5.4. si I = [a, b[et $f =_b O(g)$ ou $f =_b o(g)$ et g intégrable alors f est intégrable

Proposition 5.5. si I = [a, b[et $|f| \sim_b |g|$, alors f est intégrable si et seulement si g intégrable

Exemples 5.4. La fonction $f: x \mapsto \frac{\ln x}{x + e^x}$ est intégrable sur $]0, +\infty[$.

En effet

La fonction $f: x \mapsto \frac{\ln x}{x + e^x}$ est continue et positive sur $]0, +\infty[$.

• En 0, $\frac{\ln x}{x+e^x} \sim \ln x$ et donc $f(x) = o\left(\frac{1}{\sqrt{x}}\right)$. Comme $\frac{1}{2} < 1$, la fonction $x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur un voisinage de 0 et il en est de même de la fonction f.

П

• En $+\infty$, $f(x) \sim \frac{\ln x}{e^x} = o\left(\frac{1}{x^2}\right)$. Comme 2 > 1, la fonction $x \mapsto \frac{1}{x^2}$ est intégrable sur un voisinage de $+\infty$ et il en est de même de la fonction f.

Finalement, f est intégrable sur $]0, +\infty[$.

Proposition 5.6. Soit f continue et intégrable sur $I\int_I |f| = 0$ si et seulement si f = 0 (sur I).

Attention 5.4. C'est faux si f n'est pas continue

Corollaire 5.1. $N_1(f) = \int_I |f|$ est une norme sur $L_c^1(I,\mathbb{K}) = L^1(I,\mathbb{K}) \cap C(I,\mathbb{K})$

5.3 Fonctions carré intégrables

Définition 5.3. • Une fonction f de $C_M(I,K)$ est dite carré intégrable si f^2 est intégrable sur I.

• L'ensemble des fonctions à carré intégrables est noté $L^2(I,K)$.

Proposition 5.7. 1. si f et g sont à carré intégrables, alors $fg \in L^1(I,K)$.

2. $L^2(I,K)$, L'ensemble des fonctions carré intégrables, est un K-espace vectoriel .

Preuve:

- 1. provient de la relation $|fg| \le \frac{1}{2} (|f|^2 + |g|^2)$
- $2. \ \ \text{provient de la relation} \ |\lambda f + \mu g|^2 \leq \left(|\lambda|^2|f|^2 + |\mu|^2|g|^2 + 2|\lambda\mu||fg|\right) \\ \text{et le fait que} \left(|\lambda|^2|f|^2 + |\mu|^2|g|^2 + 2|\lambda\mu||fg|\right) \\ \text{est intégrable}.$

Corollaire 5.2. Si $K = \mathbb{R}$, on définit un produit scalaire sur l'espace $L^2_c(I,\mathbb{K}) = L^1(I,\mathbb{K}) \cap C^0(I,\mathbb{K})$ des fonctions à carré intégrables et continues par

$$(f|g) = \int_I fg$$

Preuve : (.|.) est bien définie d'après le point précédent. Elle est clairement bilinéaire, symétrique et positive.

De plus, pour f continue à carré intégrable vérifiant $\int_I |f|^2 = 0$, comme f^2 est continue positive sur I, on a $|f|^2 = 0$ et par suite f = 0.

Remarque 5.3. Sur $CPM(I) \cap L^1(I,\mathbb{R})$, ce n'est plus un produit scalaire mais juste une forme bilinéaire, symétrique positive.

Corollaire 5.3. $N_2(f) = \left(\int_I |f|^2\right)^{\frac{1}{2}}$ est une norme sur $L_c^2(I,\mathbb{K})$

Proposition 5.8 (inégalité de Cauchy-Schwarz). Si f et g sont à carré intégrables et continues par morceaux sur I alors

$$\left|\int_I fg\right| \leq \int_I |fg| \leq \sqrt{\int_I |f|^2} \, \sqrt{\int_I |g|^2}$$

page:32/ <mark>34</mark>

Remarque 5.4. Si l'intervalle I est borné , on appliquant inégalité de Cauchy-Schwarz avec g=1 , qui est intégrable et carrée intégrable sur I on remarque que toute fonction carrée intégrable sur I est intégrable sur I et

$$\left|\int_I f\right| \leq \int_I |f| \leq \sqrt{b-a} \sqrt{\int_I |f|^2}$$

6 Intégration des relation de comparaison

Théorème 6.1. Soient $f:[a,b[\to \mathbb{K} \text{ c.p.m }, \text{ et } g:[a,b[\to \mathbb{R}^+ \text{ c.p.m } \text{ positive } \text{telles } \text{que}$

$$f = O_b(g)$$

1. Si $\int_a^b g$ converge (cad g intégrable) alors :

$$\int_{x}^{b} f = O_{b} \left(\int_{x}^{b} g \right)$$

2. Si $\int_a^b g$ diverge (cad g non intégrable) alors :

$$\int_{a}^{x} f = O_{b} \left(\int_{a}^{x} g \right)$$

Théorème 6.2. Soient $f:[a,b[\to \mathbb{K} \text{ c.p.m }, \text{ et } g:[a,b[\to \mathbb{R}^+ \text{ c.p.m } \text{ positive } \text{telles } \text{que}$

$$f = o_b(g)$$

1. Si $\int_a^b g$ converge (cad g intégrable) alors :

$$\int_{x}^{b} f = o_{b} \left(\int_{x}^{b} g \right)$$

2. Si $\int_a^b g$ diverge (cad g non intégrable) alors :

$$\int_{a}^{x} f = o_{b} \left(\int_{a}^{x} g \right)$$

Théorème 6.3. Soient $f:[a,b[\to\mathbb{R}^+ \text{ et } g:[a,b[\to\mathbb{R}^+ \text{ c.p.m positives telles que$

$$f \sim_b g$$

1. Si $\int_{a}^{b} g$ converge (cad g intégrable) alors :

$$\int_{x}^{b} f \sim_{b} \left(\int_{x}^{b} g \right)$$

2. Si $\int_a^b g$ diverge (cad g non intégrable) alors :

$$\int_{a}^{x} f \sim_{b} \left(\int_{a}^{x} g \right)$$

Remarque 6.1. On a des résultats analogues si I=]a,b].

Exemples 6.1. Soit $f(x) = \ln(\ln(1+x))$ sur I =]0, 1].

On a $f(x) \sim_0 \ln(x)$ qui est intégrable sur I, donc f est intégrable sur I et puisque les fonctions ont un signes constant, on a :

$$\int_0^x \ln(\ln(1+t)) \, dt \sim_0 \int_0^x \ln(t) \, dt = x \ln(x) - x \sim_0 x \ln(x)$$