Série 1: Théorie des ensembles

Lundi 20 Septembre 2004

Exercice 1:

Soit E un ensemble non vide et $f: E \longrightarrow E$ une application. Une partie A de E est dite stable par f si $(A) \subset A$.

- 1. Montrer que toute réunion ou intersection d'une famille quelconque (finie ou infinie) de parties de E toutes stables par f est aussi stable par f.
 - Soit $A \in \mathcal{P}(E)$ on pose : $\Delta_A = \{X \in \mathcal{P}(E) \text{ tel que : } A \subset X \text{ et } X \text{ stable par } f\}.$
- 2. Montrer que $\triangle_A \neq \emptyset$.
- 3. On note par A^* l'intersection de toutes les parties qui vérifient (*) montrer que min $\triangle_A = A^*$ (NB: la relation d'ordre considérée est l'inclusion).
- 4. Avec les notations précédentes montrer que :
 - $\forall A \in \mathcal{P}(E) : A^* \text{ est stable par } f$.
 - $\forall A \in \mathcal{P}(E) : A \text{ est stable par } f \Longrightarrow A^* = A.$ En déduire que $A^{**} = A^*$.
 - $\forall (A, B) \in \mathcal{P}(E) \times \mathcal{P}(E)$ on a : $A \subset B \Longrightarrow A^* \subset B^*$.
 - $\forall (A, B) \in \mathcal{P}(E) \times P(E)$ on a : $A^* \cup B^* \subset (A \cup B)^*$.
 - $\forall (A, B) \in \mathcal{P}(E) \times P(E)$ on a : $(A \cap B)^* \subset A^* \cap B^*$.

Exercice 2:

Soit E et F deux ensembles et $f: E \to F$, A une partie de E et B une partie de F.

- 1. Montrer que $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.
- 2. Montrer que $f(f^{-1}(B)) \subset B$ et que si f est surjective on a égalité.
- 3. Montrer que $A \subset f^{-1}(f(A))$ et que si f est injective on a égalité.
- 4. Montrer que f injective $\Longrightarrow f(\overline{A}) \subset \overline{f(A)}$.
- 5. Montrer que f surjective $\Longrightarrow \overline{f(A)} \subset f(\overline{A})$.

Exercice 3:

Soit f l'application définie par : $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ où $f(n,m) = 2^n(2m+1). \forall (n,m) \in \mathbb{N}^2$.

- 1. Montrer que f est injective. On pourra utilier le thórème de Gauss.
- 2. Montrer que f est surjective. On pourra utiliser la décomposition d'un entier naturel en puissance de nombres premiers.

DS 1 (2001-2002)

Exercice 4:

Soient E, F et G trois ensembles non vides; $f: E \to F, g: F \to G$.

Montrer que : gof surjective et g injective $\Rightarrow f$ surjective

Contrôle 1 (2001-2002)

Exercice 5:

Soit E ensemble, A et B deux parties fixes de E, on définit l'application suivante :

$$g: P(E) \to P(A) \times P(B)$$

 $X \to (X \cap A, X \cap B)$

- 1. Montrer pour que g est surjective $\Leftrightarrow A \cap B = \emptyset$.
- 2. Montrer pour que g est injective $\Leftrightarrow A \cup B = E$.
- 3. Donner une CNS pour que g soit bijective puis exprimer $g^{-1}(X,Y)$ pour tout $(X,Y) \in \mathcal{P}(A) \times \mathcal{P}(B)$.

Exercice 6:

Soient E, F, G des ensembles, $f: E \to F, g: F \to G, h: G \to E$.

- 1. Montrer que : gof et hog bijectives $\Rightarrow g$ et h bijectives.
- 2. Montrer que : gofoh et fohog injectives et hogof surjectives $\Rightarrow g$ et h bijectives.
- 3. Montrer que : gofoh et fohog surjectives et hogof injectives $\Rightarrow g$ et h bijectives.

Exercice 7:

 $\mathcal{F}I\mathcal{N}$

© 2000-2004 http://www.chez.com/myismail

Mamouni My Ismail

CPGE Med V-Casablanca