MPSI 1 2002-2003

CPGE Agadir

Feuille d'exercices N°14

Mercredi le: 18-Décembre-2002

Developpements limités

1.

- **a.** Donner le $DL_{10}(0)$ de : $f(x) = \frac{1}{(1-x)(1-x^2)(1-x^5)}$
- **b**. En déduire le nombre de solutions dans IN de l'équation : a + 2b + 5c = 10
- **2**. Calculer:
 - **a.** $\lim_{0} \frac{2(chx-1)shx-x^{3}\sqrt[4]{1+x^{4}}}{sh^{5}(x)-x^{5}}$ **b.** $\lim_{x \to \infty} \left(x + \sqrt{1+x^{2}}\right)^{cotan(x)}$
- **3.** Donner l'équation de la tangente en 0 ainsi que sa position par rapport a la courbe de la fonction: $f(x) = \frac{1}{e^x 1} \frac{1}{\ln(1 + x)}$

4.

- **5**. Etudier les branches infinies en $+\infty$ ainsi que leurs position par rapport a la courbe de la fonction définie par :

 - **a.** $f(x) = e^{\frac{-1}{x}} \frac{x^2 x + 2}{x + 1}$ **b.** $g(x) = e^{-\frac{1}{x}} \frac{x^3}{x 1}$
- **6**. Déterminer la limite éventuelle en +∞ de :
 - **a.** $x^2(e^{\frac{1}{x}} e^{\frac{1}{x+1}})$
 - **b**. $ch(\sqrt{x^2+1}) ch(\sqrt{x^2-1})$
- 7. Déterminer la partie principale en 0 quand elle existe de :

 - **b.** $\frac{1}{\tan^2(x)} \frac{1}{x^2}$
- **8**. Déterminer les limites éventuelles des suites de termes général :
 - **a.** $n\sqrt{n} (\sqrt{n+1} + \sqrt{n-1} 2\sqrt{n})$
 - **b**. $n^2(ln(n+1) + ln(n-1) 2ln(n))$
- **9**. Déterminer les limites éventuelles en $\frac{\pi}{2}$ de :
 - **a.** $cos(x)e^{\frac{1}{1-sin(x)}}$
 - **b**. $tan(x)(1-tan(\frac{x}{2}))$
 - **c**. $(2 \frac{2x}{\pi})tan(x)$
- **10**. Donner un $DAS_n(+\infty)$ de f(x)
 - **a.** $n = 2, f(x) = \sqrt[3]{x^3 + 1} \sqrt{x^2 + 1}$ **b.** $n = 3, f(x) = \frac{x^2 3x + 2}{x^2 + x + 1}$

11.

- **a.** montrer que pour tout n > 2 l'équation : $x^n nx + 1 = 0$ admet une solution unique dans]0,1[que l'on notera x_n
- **b**. étudier la suite (x_n) en déduire qu'elle converge vers une limite que l'on notera L
- **c**. déterminer un équivalent simple de x_n
- **12.** Soit $n > 2, x_n$ la plus petite solution strictement positive de l'équation tan(nx) = x,

déterminer un DAS_3 de x_n par rapport a l'infiniment petit $\frac{1}{n}$

13.

- **a.** Soit n > 2, Montrer que l'équation : xtan(x) = 1 admet une seule solution dans $]n\pi, (n+1)\pi[$ qu'on notera x_n
- **b.** déterminer un DAS_3 de x_n par rapport a l'infiniment petit $\frac{1}{n}$
- **14**. *Méthode de Newton* (DS 2000-2001)

Soit $(a,b) \in IR^2$, (a < b) et f de classe C^2 convexe sur [a,b].

- **a.** montrer que si l'équation f(x) = 0 admet au moins 3 solutions alors f est nulles entres ses solutions.
- **b.** on suppose dans la suite que f' > 0 sur [a,b] et f(a)f(b) < 0 montrer alors que l'équation f(x) = 0 admet une solution que l'on notera l.
- **c.** on pose $x_0 = b, x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ montrer que le point $M(x_{n+1}, 0)$ est l'intersection de l'axe (ox) avec la tangente a la courbe de f au point $N(x_n, f(x_n))$.
- **d**. Montrer que (x_n) decroissante vers l
- **e.** montrer que $|x_{n+1} l| \le k|x_n l|^2$ pour tout $n \in IN$ (avec $k = \frac{\sup(|f'|)}{\inf(|f'|)}$)(indication:on pourra utiliser la formule de *Taylor* a l'ordre 2).
- **f**. en déduire une majoration de $|x_n l|$ en fonction de n, a, b.
- **g**. en prenant f(x) = ln(x) 1 sur[2,3] donner une valeur approchée de e a 10^{-4} près
- **15**. *DS* 98 99

Soit
$$f: [0, +\infty[\to IR]]$$

 $x \mapsto x^{1+\frac{1}{x}}$

- **a**. Etudier la continuité et la derivabilite f en 0
- **b**. Etudier en $+\infty$ les branches infinies
- **c**. donner un $DL_3(1)$ en deduire l'equation de la tangente en 1 ainsi que sa position par rapport a la courbe
- **d**. Dessiner la courbe
- **16**. *DS* 98 99

$$f: [0, +\infty[\to IR]$$

$$x \mapsto \frac{x+1}{x-1} \frac{\ln(x)}{2} \text{ si } x \neq 1$$

$$1 \text{ si } x = 1$$

- **a**. Montrer que f est continue en 1
- **b**. Montrer que f est monotone sur chaque intervalle $]0,1[,]1,+\infty[$
- **c.** Montrer que pour $x \ne 1$ on a : $f'(x) = \frac{x-1-\ln(x)}{(x-1)^2} \frac{1}{2x}$
- **d**. Calculer $\lim_{x \to \infty} f'(x)$ en deduire que f est de classe \wp^1
- e. Dessiner la courbe