Série 2 : Dénombrement

Jeudi 24 Septembre 2003

1. Entiers naturels:

Exercice 1:

Raisonnement par récurrence : Montrer pour tout $n \in \mathbb{N}^*$ que :

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.

- 2. 7 divise $3^{2n+1} + 2^{n+2}$
- 3. 9 divise $2^{2n} + 15n 1$.
- 4. $\forall k \in [|0,n|]$ on a : $C_{2n}^k \leqslant C_{2n}^n$.
- 5. $\forall p \in [|0,n|]$ on a : $\sum_{k=p}^{n} C_{k}^{p} = C_{n+1}^{p+1}$ Récurrence descendante .
- 6. $\forall m \in \mathbb{N}^*$ on a : $\frac{(mn)!}{m!n!} \in \mathbb{N}^*$ Récurrence double .
- 7. Un *n-mot de Gauss* est un 2n-uplet $(x_1, x_2,, x_{2n}$ formé par des éléments de [|1, n|] où chaque élément de [|1, n|] apparaît exactement 2 fois.
 - (a) Trouver le nombre des n-mot de Gauss pour n=1, n=2, n=3.
 - (b) Montrer que dans le cas général il y en a $\frac{(2n)!}{2^n}$.

Exercice 2:

Manipulation des sommes : Calculer pour tout $n \in \mathbb{N}^*$ les sommes suivantes :

- 1. $\sum_{1 \leqslant i \leqslant j \leqslant n} ij$.
- 2. $\sum_{1 \leqslant i \leqslant j \leqslant n} (i+j)^2$.
- 3. $\sum_{1 \leqslant i \leqslant j \leqslant n} max(i,j)$.
- 4. $\sum_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n} max(i, j)$.

2. Dénombrement :

Exercice 3:

Lemme des tiroirs : Soit $n \in \mathbb{N}^*$, E un ensemble de cardinal n+1, $E_1, E_2, ..., E_n$ n parties de E deux a deux disjointes ,c-à-d qui ne s'intersecte jamais deux a deux ,et enfin dont la ruénion est E. On dit que les parties $E_1, E_2, ..., E_n$ forment une partition de E.

1. Montrer que $\exists i \in [|1, n|] telqueCard(E_i) \geq 2$

Si on dispose de n tiroirs et n+1 objets alors l'un des tiroirs contient au moins deux objets

Exercice 4:

Paradoxe des anniversaire :

- 1. Soit $(n, p) \in (\mathbb{N}^*)^2$ tels que $n \leq p$. Quelle est la proportion des applications injectives de [|1, n|] dans [|1, p|]?
- 2. En déduire la probabilté pour que deux personnes parmi n aient le même anniversaire.
- 3. Faire le calcul pour n=45 .

Exercice 5:

Soit $n \in \mathbb{N}^*$, de combien de façon on peut faire asseoir n hommes et n femmes numérotes autour d'une table ronde en repectant l'alternance homme-femme si :

- 1. Les siéges sont numérotés mais ni les hommes ni les femmes ne le sont .
- 2. Les siéges et les hommes sont numérotés mais les femmes ne le sont pas.
- 3. Les femmes sont numérotés mais les hommes et les siéges ne le sont pas.
- 4. Les siéges ,les hommes et les femmes ne sont pas numérotés .

Exercice 6:

- 1. Dans un ensemble E a n éléments combien peut-on former de parties qui contiennent une partie fixe A, elle formée par p éléments?
- 2. Sur un ensemble E à n éléments combien peut-on définir de relations binaires? Penser a la définition des relations binaires à l'aide des graphes.
- 3. Parmi ces relations binaires combien sont-elles reflexives?

 Penser a la définition des relations binaires reflexives à l'aide des graphes et à utiliser la question (1).
- 4. Combien peut-on trouver de couples (A,B) de parties de E telles que $A \subset B \subset E$?

Exercice 7:

Soit $(n, p) \in \mathbb{N}^* \times \mathbb{N}^*$. Combien peut-on définir d'applications strictement croissantes de [|1, n|] vers [|1, n + p|]?

Penser a caractériser de telles applications à l'aide de leurs images

3. Manipulation des C_n^p :

Exercice 8:

Formule du binôme de Newton :

- 1. Quel est le coefficient de $x^6y^4z^5$ dans le dé veloppement de $(x+2y-3z)^{15}$?
- 2. En calculant de deux facons $((1+x)^n)^3$, démontrer que : $C_{3n}^n = \sum_{p=0}^n \sum_{k=0}^{n-p} C_n^p C_n^k C_n^{n-p-k}$.

- 3. Montrer que : $\forall (n,p) \in \mathbb{N}^2 \sum_{k=0}^p k C_n^{p-k} C_n^k = C_{2n-1}^{p-1}$ puis en déduire que : $\sum_{k=0}^p k \left(C_n^k \right)^2$. Penser à utiliser $(1+x)^n$ et sa derivee .
- 4. En développant ou bien en dérivant $(1+x)^n$ calculer les sommes suivantes : $\sum_{k=0}^n C_n^k$, $\sum_{k=0}^n (-1)^k C_n^k$, $\sum_{k=0}^n k C_n^k$, $\sum_{k=0}^n k^2 C_n^k$.

Exercice 9:

Montrer que f est bijective .

- 2. En déduire que : $\forall (n,m,p) \in \mathbb{N}^3 \sum_{k=0}^n C_n^p C_m^{p-k} = C_{n+m}^p$.
- 3. En déduire la valeur de $\sum_{k=0}^{n} (C_n^k)^2$ en fonction de n.

Exercice 10:

Soit
$$(n,p)\in (\mathbb{N}^*)^2$$
 .
Montrer que : $\sum_{k=0}^n C_{p+k}^p = C_{p+n+1}^{p+1}$.

Exercice 11:

Pour tout $n \in \mathbb{N}$ on pose $Q_n = \sum_{k=0}^n (-1)^k C_{n-k}^k$.

- 1. Calculer les 6 premiers Q_n .
- 2. Montrer que : $\forall n \in \mathbb{N}$ on a : $Q_{n+2} = Q_{n+1} Q_n$. Penser a un réccurence forte!.
- 3. En déduire que Q_n est 6-périodique .
- 4. Calculer $Q_{1000000}$.

FIN

©: www.chez.com/myismail

Mamouni My Ismail PCSI 2 Casablanca Maroc