MPSI 1 2002-2003 CPGE Agadir

Feuille d'exercices N°22

Lundi le:03-Mars-2003

Matrices

- **1.** On considère m un nombre complexe non nul, et on pose : $A = \begin{bmatrix} 0 & m & m^2 \\ \frac{1}{m} & 0 & m \\ \frac{1}{m^2} & \frac{1}{m} & 0 \end{bmatrix}$
 - **a**. Calculer $(A + I_3)(A 2I_3)$ En déduire que A est inversible, et calculer A^{-1} .
 - **b.** Soit $B = \frac{1}{3}(A + I_3)$, $C = -\frac{1}{3}(A 2I_3)$ et . Calculer, pour tout $n \in IN : B^n, C^n$.
 - **c**. Calculer A^n pour tout $n \in IN$.
 - **d**. Retrouver le résultat du c) en calculant le reste de la division euclidienne de X^n par (X+1)(X-2)
- **2.** Calculer les puissances successives de $\begin{bmatrix} a+b & 0 & a \\ 0 & b & 0 \\ a & 0 & a+b \end{bmatrix}$, où a et b sont deux nombres

complexes.

- **3**. Soit *A* et *B* deux matrices carrées réelles d'ordre *n*, nilpotentes (ie telles qu'une de leurs puissances soit nulle), et qui commutent.
 - **a**. Montrer que A + B, AB sont nilpotentes.
 - **b**. Montrer que $A I_n$ est inversible, et exprimer son inverse en fonction des puissances de A.
 - **c.** Inverser la matrice carré d'ordre $n \ge 2$ $\begin{bmatrix} 1 & a & 0 & \dots & 0 \\ 0 & \dots & a & 0 \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$

a étant un complexe arbitraire.

4. On considère les vecteurs

 $e_1 = (1,2,3), e_2 = (1,1,1), e_3 = (1,3,4), f_1 = (1,2,4), f_2 = (1,-1,1), f_3 = (1,1,5)$ de IR^3 . Montrer que $B_1 = (e_1,e_2,e_3), B_2 = (f_1,f_2,f_3)$ sont deux bases de IR^3 , calculer les matrices de passage de B_1 à B_2 et de B_2 à B_1 , et vérifier qu'elles sont inverses l'une de l'autre

5. Soit $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ -2 & -6 & 1 \end{bmatrix}$ montrer que A est la matrice dans la base canonique de IR³ dont

on precisera le novau et l'image

6. donner la matrice dans la base canonique de IR³ de la projection sur D parallelement a π où

D:
$$\begin{cases} x + y + z = 0 \\ x + 2y - z = 0 \end{cases} \pi : x + y - z = 0$$

- **7**. Soit p un projecteur sur un ev de dimension finie montrer que rg(p) = Tr(p) (chercher une base où sa matrice s'exprime d'une facon simple)

8. Soit
$$A = \begin{bmatrix} 0 & 2 & 4 \\ \frac{1}{2} & 0 & 2 \\ \frac{1}{4} & \frac{1}{2} & 0 \end{bmatrix}$$
 Soit $\lambda \in IR$ calculer $rg(A - \lambda I_3)$ suivant les valeurs de λ

9. Soit $\lambda \in IR, J(\lambda) = \begin{bmatrix} \lambda & 1 & \dots & 1 \\ 1 & \lambda & 1 & 1 \\ & \ddots & \ddots & 1 \\ & 1 & 1 & 1 & \lambda \end{bmatrix} \in M_n(IR)$

- **a.** Calculer $J(1)^2$ en fonction de J(1)
- **b**. Calculer $J(\lambda)$ en fonction de J(1)
- **c**. Calculer $J(\lambda)^2$ en fonction de $J(\lambda)$
- **d**. En deduire une condition sur λ pour que $J(\lambda)$ soit inversible, exprimer dans ce cas $J(\lambda)^{-1}$ en fonction de $J(\lambda)$

10. Soit
$$u: IR_n[X] \to IR_n[X] \ P(x) \to P(X+1)$$
, $B = (1, X, ..., X^n)$

a. Calculer $M_B(u)$

a. Calculer
$$M_B(u)$$

$$\begin{bmatrix}
C_0^0 & C_1^0 & \dots & C_n^0 \\
0 & C_1^1 & \dots & C_n^1 \\
0 & \dots & \dots & \dots \\
\vdots & \vdots & \ddots & \vdots \\
0 & \dots & 0 & C_n^n
\end{bmatrix}$$

11. DS 99-2000

Soit
$$n \in IN *$$
 et $A = (a_{i,j}) \in M_n(K)$, on dit que A est magique si $\sum_{i \le k \le n} a_{i,k} = i \sum_{i \le k \le n} a_{k,i} = Tr(A), \forall i \in [|1,n|].$

- **a**. Donner une matrice magique pour n=2. Dans tout la suite n=3.
- **b**. Montrer que tout matrice magique s'écrit d'une seule façon comme somme d'une matrice magique symétrique avec une matrice magique antisymétrique.
- **c**. Construire toutes les matrices magiques antisymétriques.
- **d**. Construire toutes les matrices magiques symétriques de trace nulle .
- e. En déduire toutes les matrices magiques symétriques. On se propose de montrer que : A magique et p impair $\Rightarrow A^p$ magique,
- **f**. montrer d'abord que AJ = JA = Tr(A)J où J est la matrice carré d'ordre 3 formée par des 1 partout.

On admet que $\exists (a,b) \in IR^2/A^3 - Tr(A)A^2 + aA + bI_3 = 0$,

- **g.** on suppose dans cette question Tr(A)=0, montrer que $b \neq 0 \Rightarrow A$ inversible, en déduire une contradiction puis conclure.
- **h**. Etudier le cas $Tr(A) \neq 0$.
- **12**. Dans tout le problème $n \geq 2$.
 - **a**. Etudier sur IR suivant la parité de n les variations de $f_n: x \to x^{n+1} + x^n$
 - **b**. En deduire que $f_n(-\frac{n}{n+1}) \le 2$.
 - **c**. En deduire, suivant la parite de n, le nombre de solutions de l'equations $f_n(x) = 2$.
 - **d**. Soit A la matrice carré d'ordre 2 formée par des 1 partout, trouver P inversible telle que $A = PBP^{-1}$ où B est la matrice dont les lignes sont $(0\ 0)$ et $(0\ 2)$
 - **e**. Soit (E_n) l'équation matricielle $X^{n+1} + X^n = A$ d'inconnue $X \in M_2(IR)$, montrer que la résolution de cette équation peur se ramener a celle de $(E'_n)Y^{n+1} + Y^n = B$ d'inconnue $Y \in M_2(IR)$.
 - **f**. Montrer que BY = YB.
 - **g**. Si les lignes de Y sont respectivement (a b) et (c d) montrer que : b=c=0.
 - **h**. Quelles sont les valeurs possibles de a
 - i. Discuter suivant les valeurs de n le nombre de solutions de (E_n)
- **13**. Dans tout le problème, l'espace vectoriel \mathbb{R}^3 est muni de sa base canonique notée (e_1, e_2, e_3) .

On note $L(R^3)$ la R-algèbre des endomorphismes de R^3 , $M_3(R)$ la R-algèbre des matrices d'ordre 3 à coefficients réels et I_3 la matrice identité.

Il est demandé de faire figurer tous les calculs sur la copie.

Partie I

Soit *s* l'endomorphisme de \mathbb{R}^3 de matrice $S = \frac{1}{3} \begin{pmatrix} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{pmatrix}$ dans la base canonique.

- **1**. Montrer que s est un automorphisme de \mathbb{R}^3 .
- **2**. Soient $e'_1 = (1, 1, 1), e'_2 = (1, -1, 0)$ et $e'_3 = (1, 1, -2)$.
 - **a.** Montrer que (e'_1, e'_2, e'_3) est une base de \mathbb{R}^3 .
 - **b**. Déterminer la matrice S' de S' dans la base (e'_1, e'_2, e'_3) .
 - **c**. Calculer $(S')^n$ et donner une méthode de calcul de S^n (on ne demande pas d'effectuer les dits calculs).
 - **a.** La famille (I_3, S) est-elle libre dans $M_3(R)$?
 - **b**. Montrer que S^2 peut s'exprimer sous forme de combinaison linéaire de I_3 et S.
 - **c**. En déduire que pour tout $n \in \mathbb{N}$, il existe un unique couple (a_n, b_n) de réels tel que $S^n = a_n I_3 + b_n S$ (on convient que : $\forall M \in \mathbb{M}_3(\mathbb{R})$ $M^0 = I_3$).
 - **d**. Donner les valeurs de a_0 , b_0 , a_1 , b_1 , et exprimer, pour $n \in \mathbb{N}$, a_{n+1} et b_{n+1} en fonction de a_n et b_n .
 - **e**. Montrer que la suite $(a_n + b_n)_{n \in \mathbb{N}}$ est constante, puis que la suite $(b_n + 1)_{n \in \mathbb{N}}$ est géométrique.
 - **f**. En déduire l'expression de a_n et b_n pour tout $n \in \mathbb{N}$.
- **3**. Soit $B = S 2I_3$.
 - **a**. Calculer B^n pour $n \in \mathbb{N}$.
 - **b**. En déduire l'expression de S^n en fonction de I_3 et B pour $n \in \mathbb{N}$ (on pourra, après justification, utiliser la formule du bin me de Newton).
 - **c**. Comparer avec le résultat de la question 3).

4. L'expression de S^n obtenue aux questions 3) et 4) est-elle valable pour $n \in \mathbb{Z}$?

Partie II

Soit f1'endomorphisme de R³ de matrice
$$A = \frac{1}{3} \begin{pmatrix} -1 & -1 & 5 \\ 5 & -1 & -1 \\ -1 & 5 & -1 \end{pmatrix}$$
 dans la base canonique.

On pose : $u = f \circ s^{-1}$ et on note U la matrice de u dans la base canonique.

- **1.** Calculer U; vérifier que u est une rotation vectorielle et que $u \circ s = s \circ u = f$. **2.** Soit $(e_1'' = \frac{e_1'}{\sqrt{3}}, e_2'' = \frac{e_2'}{\sqrt{2}}, e_3'' = \frac{e_3'}{2\sqrt{2}})$.
- - **a.** Montrer que (e_1'', e_2'', e_3'') est une base.
 - **b**. Ecrire la matrice U' de u dans cette base et caractériser géométriquement u.
 - **a**. Exprimer la matrice de s dans la base (e_1'', e_2'', e_3'') en fonction de S'.
 - **b**. En déduire la matrice de f dans la base (e_1'', e_2'', e_3'') .
- **3**. **a**. Quel est l'ensemble des vecteurs invariants par *f* ?
 - **b**. Soit $P = \text{Vect } (e_2'', e_3'')$.
 - **i**. Montrer que f(P) = P.
 - ii. Soit g l'endomorphisme de P tel que pour tout x de P, g(x) = f(x). Montrer que g est la composée de deux applications linéaires simples que l'on reconnaitra.
- **4.** On note C(f) l'ensemble des endomorphismes de R^3 commutant avec f, c'est-à-dire l'ensemble des endomorphismes g tels que $f \circ g = g \circ f$.
 - **a**. Montrer que C(f) est une sous-algèbre de $L(\mathbb{R}^3)$.
 - **b**. Soit $g \in C(f)$.
 - i. Montrer que le vecteur $g(e_1'')$ est invariant par f. Que peut-on en déduire ?
 - ii. Soit M la matrice de g dans la base (e_1'', e_2'', e_3'') . Montrer que M commute avec
 - iii. En déduire la forme générale de la matrice d'un endomorphisme de C(f) dans la base (e_1'', e_2'', e_3'') .
 - **c.** Quelle est la dimension de l'espace vectoriel C(f)?