Série 9: Arithmétique

Samedi 04 Novembre 2004

Exercice 1:

Montrer les propriétés suivantes :

- 1. $\forall (a,b,c) \in \mathbb{N}^3$: (9 divise $a^3 + b^3 + c^3$) \Rightarrow (3 divise a ou b ou c)
- 2. $\forall (a,b,c) \in \mathbb{N}^3 : (7 \text{ divise a } ^3 + b ^3 + c ^3) \Rightarrow (7 \text{ divise } abc)$
- 3. $\forall n \in \mathbb{N} \text{ on a : 6 divise } 5n^3 + n$
- 4. $\forall n \in \mathbb{N} \text{ on a : } 9 \text{ divise } n^3 + (n+1)^3 + (n+2)^3$

Exercice 2:

 $Nombres\ de\ Fermat\ ({\rm math\acute{e}maticien}\ français:1601-1665)\ . Les\ nombres\ de\ Fermat$ sont ceux de la forme : $F_n=2^{2^n}+1$

- 1. montrer que tous ces nombres sont premiers entre eux deux a deux
- 2. montrer que F_n est premier pour $n \in [0,4]$ mais F_5 ne l'est pas
- 3. soit a ∈ N* montrer que si 2^a + 1 est premier alors a est une puissance de 2 A l'heure actuelle on ne connaît aucun nombre de Fermat premier autre que ceux de (2) mais on connaît plusieurs qui ne le sont pas : F₁₉₄₅(qui a plus de 10582 chiffres) est divisible par 2¹⁹⁴⁷5 + 1(qui a exactement 587 chiffres)

Exercice 3:

- 1. Montrer que si $\frac{p}{q} \in \mathbb{Q}$ est solution de l'équation : $a_n X^n + a_{n-1} X^{n-1} + . + a_0 = 0$ avec $p \wedge q = 1$ et $(ai)_{0 \leq i \leq n} \in \mathbb{N}^{n+1}$ alors : p divise a_0 et q divise a_n critère d'Eseinstein
- 2. résoudre l'équation : $30X^3 37X^2 + 15X 2$

Exercice 4:

Donner le chiffres des unités de 4444^{4444} . On pourra travailler dans $\mathbb{Z}/10\mathbb{Z}$.

Exercice 5:

On pose $N=4444^{4444}$, A la somme des chiffres de N, B celle de A et C celle de B, trouver C.(On pourra utiliser aprés l'avoir justifié qu'un nombre et la somme de ses chiffres sont toujours $congrus\ modulo\ 3$ et 9)

Exercice 6:

Soit N=111111111 , écrit en base 10 , démontrer que : $N^2=12345678987654321$

Exercice 7:

- 1. Nous sommes le mercredi 08-12-2004, l'année prochaine quel jour sera le 08-12-2005?
- 2. Dans quelle année le 08 12 sera un mercredi?

Exercice 8:

- 1. Montrer que tout entier supérieur a 2 non premier admet au moins un diviseur premier inférieur a sa racine.
- 2. Enoncer le crible d'Erathosténe qui permet de tester si un nombre est premier.
- 3. Les nombres premiers suivants sont ils premiers : 353, 91451

Exercice 9:

Montrer que si p est premier alors $:(p-1)! \equiv -1 \pmod{p}$ Théorème de Wilson On pourra utiliser le fait que dans $\mathbb{Z}/p\mathbb{Z}$ tout élément est inversible et ainsi multiplier tous ces éléments entre eux

Exercice 10:

Résoudre le système suivant d'inconnue $n \in \mathbb{N}$:

$$4$$
 divise n

n admet 10 diviseurs dans \mathbb{N}

il existe un nombre premier p tel que n = 37p + 1

Exercice 11:

Trouver tous les chiffres x et y qui vérifient : $\overline{28x75y}^{10}$ est divisible par 3 et par 11.

Exercice 12:

Soit p un nombre premier. Montrer que p/C_p^k $\forall k \in [|1,p-1|].$ Utiliser Gauss

Exercice 13:

Soit p un nombre premier. Montrer que : $\forall n \in \mathbb{N} : n^p \equiv n \quad [p]$ (Petit Théorème de Fermat)

Exercice 14:

Soit $(a,b) \in \mathbb{N}^{*2}$ montrer que $a \wedge b = 1 \Leftrightarrow ab \wedge (a+b) = 1$.

Exercice 15:

Resoudre dans \mathbb{N}^* le système suivant : $\begin{cases} x \geq y \\ x \vee y = (x \wedge y)^2 \\ x \vee y + x \wedge y = 156 \end{cases}$

2

Exercice 16:

Soit $n \in \mathbb{N}$, on pose x = 3n + 1, y = 5n - 1.

- 1. Montrer que $x \wedge y$ divise 8.
- 2. Trouver les entiers n tels que $x \wedge y = 8$.

Exercice 17:

Soit $n \in \mathbb{N}$.Montrer que 2^n divise $\left(3 + \sqrt{5}\right)^n + \left(3 - \sqrt{5}\right)^n$

Exercice 18:

Soient $a \in \mathbb{N}$, $a \geq 2$ et $(m,n) \in \mathbb{N}^{*2}$ tel que $: m \geq n$. On pose m = qn + r avec $0 \leq r < n$

- 1. montrer que : $\exists b \in \mathbb{N} \; ; \; a^m 1 = (a^n 1)b + a^r 1.$
- 2. Montrer que : $(a^m 1) \wedge (a^n 1) = a^{m \wedge n} 1$.
- 3. Montrer que : $(a^n 1)$ divise $(a^m 1) \iff n$ divise m

Exercice 19:

Soit N_k le nombre qui s'écrit avec k chiffres 1 en base 10, montrer que : $N_h/N_k \Longleftrightarrow h/k$

Exercice 20:

Nombres de Mersenne : ils sont de la forme : $M_p = 2^p - 1$ avec p premier.

- 1. Montrer que les Nombres de Mersenne sont premiers entre eux deux a deux
- 2. Soit $(a,b) \in \mathbb{N}^{*2}$ tel que : $a^b 1$ est premier ,montrer alors que : a = 2 et b premier

Exercice 21:

Pour tout entier n on note par D(n) l'ensemble de ses diviseurs dans $\mathbb N$ et $\varphi(n)=\sum_{d/n}d$. Soit $(m,n)\in\mathbb N^{*2}$

- 1. Montrer que si $n \wedge m = 1$ alors chaque diviseur de nm s'écrit sous la forme dd' où d divise n et d' divise m
- 2. En deduire que : $n \wedge m = 1 \Rightarrow D(nm) = D(n) \times D(m)$
- 3. En deduire que : $n \wedge m = 1 \Rightarrow \varphi(nm) = \varphi(n)\varphi(m)$

Exercice 22:

On rapelle que si $n \geq 2$ et p premier $v_p(n)$ désigne la puissance de p dans la décomposition de n en produits de facteurs premiers

3

1. Montrer que $\forall i \in IN \ p^i$ divise $n \Longrightarrow i \leq v_p(n)$

- 2. Montrer que $\forall (i,j) \in IN^2 \ p^{i+j} \leq n \Longrightarrow E\left(\frac{1}{p^j}E\left(\frac{n}{p^i}\right)\right) = E\left(\frac{n}{p^{i+j}}\right)$
- 3. On pose $m=E\left(\frac{n}{p}\right)$, montrer que : $v_p(n!)=m+v_p(m!)$
- 4. Applications:
 - (a) Calculer $v_7(10000!)$
 - (b) Decompose 16! en produits de facteurs premiers.
 - (c) Monter qu'en base 10, 1000! se termine par 249 zeros.

Exercice 23:

Préambule :

- -Soit $n \in \mathbb{N}^*$ on note par $\varphi(n)$ la somme des diviseurs de n dans \mathbb{N}
- -Soit $n \in \mathbb{N}^*$. On dit que n est parfait $ssi \varphi(n) = 2n$.
- -On appelle Nombre d'Euclide tout entier naturel de la forme $2^{p-1}(2^p-1)$ tel que $p-2^p-1$ sont premiers .
 - 1. Montrer que si $n \wedge m = 1$ alors chaque diviseur de nm s'écrit sous la forme dd' où d divise n et d' divise m
 - 2. En deduire que : $n \wedge m = 1 \Rightarrow \varphi(nm) = \varphi(n)\varphi(m)$
 - 3. Soit $E_p = 2^{p-1} \left(2^p 1 \right)$ un Nombre d'Euclide . Trouver tous les diviseurs de E_p .
 - 4. En déduire que les Nombres d'Euclide sont tous parfaits
 - 5. Soit N un nombre parfait pair.
 - (a) Montrer que : $\exists m \in \mathbb{N} \quad \exists q \quad impair \text{ tel que : } N = 2^m q$
 - (b) Montrer que $\exists r \in \mathbb{N}^*$ / $q = (2^{m+1} 1)r, \varphi(q) = 2^{m+1}r$. On pourra utiliser (2).
 - (c) Montrer que r=1.On pourra utiliser le fait que N est parfait.
 - (d) Montrer que $p, 2^p 1$ sont premiser où p=m+1
 - (e) Conclure
 - 6. (*) Soit N un nombre parfait impair $\geqslant 3$.Montrer que N admet au moins 3 diviseurs premiers et en déduire que $N \ge 105$

A l'heure actuelle on ne sait pas s'ils existent des nombres parfaits impairs

FIN

© 2000-2004 http://www.chez.com/myismail

Mamouni My Ismail

CPGE Med V-Casablanca