FEUILLE D'EXERCICES: Groupes Cycliques.

MPSI-Maths.

Mr Mamouni : myismail1@menara.ma

Source disponible sur :

@http://www.chez.com/myismail

بِسِمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ وَ قُلِ إِعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُم وَ رَسُولُهُ وَ المُؤ مِنُون

صَدَقَ اللَّهُ العَظِيم

Exercice 1. Soit G un groupe et a, b deux éléments fixes de G, d'ordre finis tel que ab = ba et $\langle a \rangle \cap \langle b \rangle = \{e\}$. Montrer que ab est d'ordre fini avec $o(ab) = o(a) \vee o(b)$.

Exercice 2. Soit G un groupe fini et a un élément de G d'ordre fini et $n \in \mathbb{N}$.

Montrer que a^n est d'ordre fini avec, $o(a^n) = \frac{o(a)}{o(a) \wedge n}$.

Exercice 3. Soit G un groupe monogène engendré par un élément a, et H un sous-groupe de G.

- 1) Montrer que l'application : $\varphi: (\mathbb{Z}, +) \longrightarrow (G, .)$ est un $n \longmapsto a^n$ morphisme de groupe.
- 2) En déduire que $\exists p \in \mathbb{N}$ tel que $\varphi^{-1}(H) = p\mathbb{Z}$.
- 3) En déduire que H est engendré par a^p .

Conclusion : Tout sous-groupe d'un groupe monogène est monogène. Exercice 4. Soit G un groupe abélien, fini de cardinal n, et a un élément de G.

- 1) Montrer que l'application $\varphi_a: G \longrightarrow G$ est bijective, en déduire que $\varphi_a(G) = G$
- 2) En faisant le produit des éléments de G et ceux de $\varphi_a(G)$, montrer que $a^n = e$.
- 3) En déduire que o(a) divise n.

Exercice 5. Soit G un groupe non réduit à son élément neutre, dont les seuls sous-groupe sont l'élément neutre et lui même. Montrer que G est monogène, puis fini et que son cardinal est premier.

Exercice 6. Soit G_1 et G_2 deux groupes, on muni leur produit cartesien $G_1 \times G_2$ de sa structres de groupe canonique, en posant

(a,b).(c,d) = (a.c,b.d). On suppose de plus qu'il sont cycliques.

- 1) Soit $(a, b) \in G_1 \times G_2$, montrer que $o(a, b) = o(a) \vee o(b)$.
- 2) En déduire que : $G_1 \times G_2$ est cyclique si et seulement si card $(G_1) \wedge \text{card}(G_2) = 1$.

Exercice 7. Soit G un groupe et a, b deux éléments fixes de G.

- 1) Montrer que $\forall n \in \mathbb{N}$ $(ab)^{n+1} = a(ba)^n b$.
- 2) En déduire que ab est d'ordre fini si et seulement si ba est d'ordre fini avec o(ab) = o(ba).

Exercice 8. Soit G un groupe et a, b deux éléments fixes de G.

- 1) Montrer que a d'ordre fini si et seulement si a^{-1} est d'ordre fini avec $o(a^{-1}) = o(a)$.
- 2) Montrer que b d'ordre fini si et seulement si aba^{-1} est d'ordre fini avec $o(aba^{-1}) = o(b)$.

Exercice 9. .

- 1) Montrer que l'ensemble $G=\{z\in\mathbb{C} \text{ tel que } \exists n\in\mathbb{Z} \text{ tel que } z^{2^n}=1 \text{ est un sous groupe de } (\mathbb{C}^*,\times) \text{ infini non monogène.}$
- 2) Montrer que tout sous-groupe fini du groupe G est cyclique.

Exercice 10. Soit $n \in \mathbb{N}^*$ et $G = \mathbb{Z}/n\mathbb{Z}$. Soit $k \in \mathbb{Z}$ et $d = k \wedge n$.

- 1) Déterminer l'ordre de \dot{k} dans G.
- 2) Montrer que \dot{k} et \dot{d} engendrent le même sous-groupe de G.
- 3) Quels sont tous les sous-groupes de G?

Exercice 11. Soit $f: G_1 \longrightarrow G_2$ un morphisme de groupe et $a \in G_1$, d'ordre fini.

Montrer que f(a) est d'ordre fini avec o(f(a)) divise o(a) avec égalité si f est bijective.

Exercice 12. Théorème du rang.

Soit $f:G\longrightarrow G'$ un morphisme de groupes où G est un groupe fini. Montrer que $\mathbf{card}(\mathrm{Ker} f)\times\mathbf{card}(\mathrm{Im} f)=\mathbf{card}(G)$.

Exercice 13. Décomposition d'un élément d'ordre fini.

Soit G un groupe multiplicatif et $a \in G$ d'ordre np avec $n \wedge p = 1$. Montrer qu'il existe $b, c \in G$ uniques tels que b est d'ordre n, c est d'ordre p, a = bc = cb.

Indication : utiliser la formule de Bézout.

Exercice 14. Groupe d'ordre pair.

Soit G un groupe fini de cardinal pair.

- 1) Montrer que l'ensemble des x tel que $x^2 \neq e$ est de cardinal pair.
- 2) Montrer qu'il existe dans G un élément d'ordre 2.

Exercice 15. Groupe d'ordre impair.

Soit G un groupe fini de cardinal impair.

Montrer que : $\forall x \in G, \exists ! y \in G \text{ tel que } x = y^2.$

Exercice 16. Groupe d'exposant 2.

Soit G un groupe fini tel que : $\forall x \in G, x^2 = e$.

- 1) Montrer que G est commutatif (considérer (xy)(xy)).
- 2) Soit H un sous-groupe de G et $x \in G \setminus H$. On note K le sous groupe engendré par $H \cup \{x\}$. Montrer que $\operatorname{card} K = 2\operatorname{card} H$.
- 3) En déduire que cardG est une puissance de 2.

Exercice 17. Caractérisation des sous groupes d'un groupe cyclique.

Soit G un groupe cyclique d'ordre n,a un générateur de G, et $G_d = \{x \in G \text{ tel que } x^d = 1\}$.

- 1) Soit $(c,d) \in \mathbb{N}^2$ tel que cd=n, montrer que $G_d=< a^c>$ et card $G_d=d$
- 2) Soit H un sous groupe de G
 - a) Justifier l'existence d'un plus petit $p \in \mathbb{N}^*$ tel que $a^p \in H$.
 - b) Montrer que $p \le n$ et que $H = \langle a^p \rangle = G_q$ où pq = n.
 - c) Déduire une bijection entre les sous groupes de G et les diviseurs de n.
- 3) Application:
 - a) Soit $k \in \mathbb{Z}$, déterminer en fonction de $n \wedge k$ le couple (p,q) réalisant :pq = n et $< a^k > = < a^p > = G_q$.
 - b) Soit H un sous groupe fini de (\mathbb{C}^*, \times) montrer que : $\exists n \in \mathbb{N}^*$ tel que $H = U_n$.

Exercice 18. Théorème de Lagrange.

Soit G un groupe fini et H un sous-groupe de G. On définit une relation sur G par : $\forall x, y \in G, x \sim y \iff \exists h \in H$ tel que x = hy.

- 1) Montrer que \sim est une relation d'équivalence.
- 2) Soit $a \in G$. Quelle est la classe de a?
- 3) Soit $a \in G$. Montrer que \dot{a} est équipotent à H.
- 4) En déduire que cardH divise cardG (Théorème de Lagrange).

Exercice 19. Groupe d'ordre ab avec $a \wedge b = 1$. Soit G un groupe commutatif fini d'ordre n = ab avec $a \wedge b = 1$. On pose $A = \{x \in G \text{ tel que } x^a = e\}$ et $B = \{x \in G \text{ tel que } x^b = e\}$.

- 1) Montrer que A et B sont des sous-groupes de G.
- 2) Montrer que $A \cap B = \{e\}$ et que tout élément $g \in G$ s'écrit de façon sous la forme $g = g_1g_2$.

Fin.