Complément 2: Arithmétique

Lundi 20 Décembre 2004

Exercice 1:

Equations à coefficients entiers : Soient a, b, c trois entiers relatifs. On considère l'équation : ax + by = c, dont on recherche les solutions dans \mathbb{Z}^2 .

- 1. Donner une condition nécéssaire et suffisante pour que cette équation admette une solution.
- 2. Soit (x_0, y_0) une solution du problème de Bézout : $ax_0 + by_0 = d$. Déterminer toutes les solutions de ax + by = c en fonction de a, b, c, d, x_0 et y_0 .
- 3. Résoudre dans \mathbb{Z}^2 : 2520x 3960y = 6480.

Exercice 2:

Equations à coefficients entiers : Résoudre dans $\mathbb Z$:

- 1. 95x + 71y = 46.
- 2. 20x 53y = 3.
- 3. 12x + 15y + 20z = 7.

Exercice 3:

Congruences simultanées ou théorème des restes chinois Soient $a,b,n,m\in\mathbb{Z}$ avec

 $n \wedge m = 1$. On considère le système : $(S) \left\{ \begin{array}{l} x \equiv a & [n] \\ x \equiv b & [m] \end{array} \right.$

- 1. Justifier l'existence de $(u,v)\in\mathbb{N}^2$ tel que: $\left\{\begin{array}{ll} nu\equiv 1 & [m]\\ mv\equiv 1 & [n] \end{array}\right.$
- 2. En déduire que $x_0 = amv + bnu$ est une solution particulière du sytème (S).
- 3. Montrer que toutes les autres solutions sont congrues avec x_0 modulo nm.
- 4. Résoudre : $\begin{cases} x \equiv 2 & [140] \\ x \equiv -3 & [99] \end{cases}$
- 5. Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces.

Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment ; le cuisinier reçoit alors 4 pièces.

Dans un naufrage ultérieur, seuls le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces.

Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

Réponse: 785

Exercice 4:

Théorème des restes chinois généralisé : On se propose de résoudre le système suivant d'inconnue $x \in \mathbb{Z}$:

$$\left\{ \begin{array}{ll} x \equiv a_1 & [m_1] \\ x \equiv a_2 & [m_2] \\ \vdots & , \text{ où les } m_i \text{ sont deux à deux premiers entre eux.} \\ x \equiv a_n & [m_n] \end{array} \right. ,$$

- 1. Montrer que : $\forall i \in [|1, n|], \exists u_i \in \mathbb{N} \text{ tel que: } M_i u_i \equiv 1 \quad [m_i], \text{ où } M_i = \frac{M}{m_i}, \text{ avec } M = \prod_{i=1}^n m_i.$
- 2. Montrer que $x_0 \sum_{i=1}^n a_i M_i u_i$ est solution particulière de (S).
- 3. Montrer que toutes les autres solutions de (S) sont congrues à x_0 [M], en déduire l'ensemble de solutions du sytéme.

4. Résoudre :
$$\begin{cases} x \equiv 3 & [4] \\ x \equiv -2 & [3] \\ x \equiv 7 & [5] \end{cases}$$

Exercice 5:

Décomposition à coefficients positifs : Soient $a, b \in \mathbb{N}^*$ premiers entre eux. Montrer que : $\forall x \geq ab, \exists u, v \in \mathbb{N}$ tels que au + bv = x.

Exercice 6:

Soient $a,b\in\mathbb{N}^*$ premiers entre eux tels que ab est un carré parfait. Montrer que a et b sont des carrés parfaits.

Exercice 7:

Soient $a,b\in\mathbb{N}^*$ et m,n premiers entre eux tels que $a^n=b^m$. Montrer qu'il existe $c\in\mathbb{N}^*$ tel que $a=c^m$ et $b=c^n$.

FIN

© 2000-2004 http://www.chez.com/myismail

Mamouni My Ismail

CPGE Med V-Casablanca