Exercice 1. : Soient E et F deux ensembles finis non vides et de même cardinal. Soit f une application de $\mathcal{P}(E)$ dans $\mathcal{P}(E)$ vérifiant les propriétés :

- $(i): f(\emptyset) = \emptyset$
- (ii): $\forall A, B \in \mathcal{P}(E)$ $f(A \cup B) = f(A) \cup f(B)$
- $(iii): \forall A \in \mathcal{P}(E) \operatorname{card}(f(A)) \geqslant \operatorname{card}(A)$

On dit que A est une partie normale de E lorsque $\operatorname{card}(f(A)) = \operatorname{card}(A)$ Notez bien que f est une application dont l'ensemble de départ est $\mathcal{P}(E)$ et non pas E.

- 1. Montrer que
 - a) $\forall A, B \in \mathcal{P}(E) \ A \subset B \Rightarrow f(A) \subset f(B)$
 - b) $\forall A, B \in \mathcal{P}(E) \ f(A \cap B) \subset f(A) \cap f(B)$.
- 2. Montrer que si A et B sont des parties normales de E, $A \cup B$ et $A \cap B$ sont aussi des parties normales de E et $f(A \cap B) = f(A) \cap f(B)$.
- 3. Montrer que $H = \{ \operatorname{card}(A) ; A \text{ partie normale de } E \text{ non vide} \}$ admet un plus petit élément k_0 . Pour la suite A_0 désigne une partie normale de cardinal k_0 .
- 4. Montrer que si A est une partie normale de E, $A_0 \subset A$ ou $A \cap A_0 = \emptyset$.
- 5. Soit x un élément de A_0 ; soit y un élément de $f(\{x\})$. On note $E' = E \setminus \{x\}$ et $F' = F \setminus \{y\}$, et on considère $f' : \left| \begin{array}{c} \mathcal{P}(E') \to \mathcal{P}(F') \\ A \longmapsto f(A) \cap F' \end{array} \right|$. Montrer que f' vérifie les propriétés (i), (ii) et (iii). (on pourra prouver que si A est une partie normale de E' (pour f) alors $y \notin f(A)$.

30/8/2004 1/1