DL 4: Fonctions Réelles

A rendre Jeudi le 15 Janvier 2004

PARTIE A:

- 1. Soit g la fonction définie sur \mathbb{R}^* par $g(x) = \frac{x-1}{x} \ln |x|$.
 - (a) Etudier les variations de g; en déduire le signe de g(x).
 - (b) Montrer en particulier qu'il existe un unique réel négatif α tel que $g(\alpha) = 0$;
 - (c) Donner une valeur approchée de α à 0,1 près.
- 2. Soit h la fonction définie pour x > 1 par $h(x) = \frac{g(x)}{(x-1)^2}$.
 - (a) Montrer que $h'(x) = \frac{1}{(x-1)^3} u(x)$, où u est une fonction que l'on déterminera.
 - (b) Etudier les variations de u, le signe de u(x), puis le signe de h'(x) pour x > 1.

PARTIE B:

Soit f la fonction définie par $f(x) = |x|^{\frac{1}{x-1}}$.

- 1. Déterminer l'ensemble de définition de f et les limites de f aux bornes des intervalles de définition. Montrer que f est prolongeable par continuité au point 1.
 - On notera toujours f la fonction ainsi prolongée.
- 2. On admet que $\lim_{t \to 0} \frac{\ln(1+t)-t}{t^2} = -\frac{1}{2}$. Montrer que la fonction f est dérivable au point 1 et calculer f'(1).
- 3. Etudier les variations de f et construire sa courbe représentative dans un repère orthonormal (unité : 2 cm.). On calculera f(-1), $f(\frac{3}{2})$, f(2) et f(4).

PARTIE C:

On se propose d'étudier la suite u_n définie par la condition initiale $u_0 = 4$ et la relation de récurrence :

$$u_{n+1} = f(u_n) : \forall n \in \mathbb{N}$$

- 1. Montrer que : $\exists k \in]0, 1[, \exists x \in [\frac{3}{2}, +\infty[|f'(x)| \le k].$
 - . On pourra remarquer que f'(x) = f(x) > h(x) pour x > 1.
- 2. Résoudre, sur \mathbb{R}_{+}^{*} , l'équation f(x) = x.
- 3. Montrer que l'intervalle $\left[\frac{3}{2},4\right]$ est stable par f.
- 4. Des questions précédentes, déduire la convergence de la suite (u_n) .

FIN

©: www.chez.com/myismail