Problème I. Source Concours HEC 2004, option scientifique.

Notations : $\mathcal{M}_3(\mathbb{C})$ désigne l'ensemble des matrices carrées de dimension 3 sur le corps \mathbb{C} . a, b, c sont des nombres complexes. On note I, J et M(a,b,c) les matrices suivantes

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad M(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$

On note $j=e^{2i\pi/3}$. $j^2=\bar{j}=e^{4i\pi/3}$ est une autre racine cubique de l'unité.

- 1. Calculer J^2 et J^3 .
- 2. Déterminer les valeurs propres de J. La matrice J est–elle diagonalisable sur le corps \mathbb{C} ? L'est-elle sur le corps \mathbb{R} ?
- 3. Pour chaque valeur propre de J déterminer le vecteur propre associé ayant 1 pour première composante, et une matrice P de passage à une base de vecteurs propres.
- 4. Exprimer la matrice M(a,b,c) à l'aide des matrices I, J et J^2 . En déduire que $H = \{M(a,b,c) \text{ tel que} : (a,b,c) \in \mathbb{C}^3\}$ est un sous—espace vectoriel de $\mathcal{M}_3(\mathbb{C})$ pour les lois usuelles (somme et loi externe). Précisez la dimension de H.
- 5. Montrer que les vecteurs propres (complexes) de J sont aussi vecteurs propres de J^2 ainsi que de M(a,b,c). En déduire les valeurs propres de M(a,b,c) à l'aide de celles de J, puis en fonction du nombre complexe j.
- 6. Montrer que tout élément de H est diagonalisable sur \mathbb{C} . Donner la décomposition de M(a,b,c) en fonction de la matrice P du (3) et d'une matrice diagonale que l'on explicitera.
- 7. On suppose ici que les coefficients (a, b, c) sont réels.
 - (a) Montrer que toutes les valeurs propres de M(a, b, c) sont réelles si et seulement si b = c.
 - (b) Déterminer les valeurs propres de M(a,b,c) ainsi que les sous-espaces propres réels associés.

Problème II. Source Concours ESSEC 2004, option économie.

On note $\mathbb{R}_N[X]$ l'espace vectoriel formé des polynômes de degré inférieur ou égal à N et du polynme nul; on désigne par Id l'application identique de $\mathbb{R}_N[X]$ dans $\mathbb{R}_N[X]$.

1. Soit a un nombre réel non nul et P un élément de $\mathbb{R}_N[X]$.

Justifier que P(aX+1-a) (c'est-à-dire la fonction de $\mathbb R$ dans $\mathbb R: x\mapsto P\left(ax+1-a\right)$) est un polynôme de même degré que P.

Dans toute la suite de l'exercice, pour tout réel a non nul, on note f_a l'application de $\mathbb{R}_N[X]$ dans $\mathbb{R}_N[X]$ qui à un polynôme P associe le polynôme P(aX + 1 - a).

- 2. Soient a et b des nombres réels non nuls.
 - (a) Déterminer la composée $f_b \circ f_a$ de f_a par f_b .
 - (b) Démontrer que f_a est un isomorphisme de $\mathbb{R}_N[X]$, et préciser sa bijection réciproque, notée $(f_a)^{-1}$.
 - (c) On pose : $(f_a)^0 = Id$ et, pour tout entier naturel $n : (f_a)^{n+1} = (f_a)^n \circ f_a$. Démontrer que, pour tout entier naturel $n : (f_a)^n = f_{a^n}$.
- 3. Pour tout réel a non nul, on note M_a la matrice de f_a dans la base canonique $(1, X, ..., X^N)$ de $\mathbb{R}_N[X]$.
 - (a) Expliciter M_a dans le cas N=3.

Dans le cas général, donner le coefficient de la (i + 1)-ième ligne et (j + 1)-ième colonne de M_a (i et j entiers compris au sens large entre 0 et N).

(b) n désignant un entier naturel, justifier l'égalité : $(M_a)^n = M_{a^n}$.

Ce résultat reste-t-il valable si n est un entier négatif?

4. Préciser l'ensemble des valeurs propres de f_a .

Pour tout entier k compris au sens large entre 0 et N, calculer $f_a((X-1)^k)$.

L'endomorphisme f_a est-il diagonalisable?

Problème III. Racines carrées de matrices. Source: Concours national commun français DEUG, 2004.

On rappelle que $M_3(\mathbb{R})$ désigne l'ensemble des matrices carrées de taille 3 à coefficients réels. Soit $A \in M_3(\mathbb{R})$, on dit qu'une matrice $R \in M_3(\mathbb{R})$ est une racine carrée de A si $R^2 = A$.

Le but de l'exercice est de chercher les racines carrées de la matrice A dans les deux exemples suivants qui sont **indépendants**.

Exemple 1 Cas où
$$A = \begin{pmatrix} 11 & -5 & 5 \\ -5 & 3 & -3 \\ 5 & -3 & 3 \end{pmatrix}$$
.

6. Réduction de A

Déterminer le polynôme caractéristique de A puis justifier l'existence d'une matrice $P \in M_3(\mathbb{R})$

inversible telle que
$$A = PDP^{-1}$$
 où $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 16 \end{pmatrix}$.

- 7. Montrer que R est une racine carrée de A, si et seulement si la matrice $S=P^{-1}RP$ est une racine carrée de D.
- 8. Racines carrées de D

Soit S une racine carrée de D.

- (a) Montrer que DS = SD.
- (b) Montrer que la matrice S est diagonale.
- (c) Pour $i \in \{1, 2, 3\}$, on note respectivement s_i et d_i les coefficients diagonaux des matrices S et D. Exprimer s_i en fonction de d_i puis en déduire les racines carrées de la matrice D.
- 9. Ecrire toutes les racines carrées de *A* à l'aide de la matrice *P*. (On ne demande pas de calculer *P*.)

Exemple 2 : Cas où
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

10. Question préliminaire : Endomorphisme nilpotent

Soit f un endomorphisme non nul de \mathbb{R}^3 nilpotent, c'est-à-dire vérifiant $f^N=0$ pour un certain entier naturel N.

Il existe alors un entier naturel non nul k tel que $f^{k-1} \neq 0$ et $f^k = 0$.

Le but de la question est de montrer que $k \le 3$.

Soit x un vecteur de \mathbb{R}^3 tel que $f^{k-1}(x)\neq 0$.

- (a) Montrer que pour $i \in [0,1,...,k-1]$, le vecteur $f^i(x)$ est non nul. (on rappelle que $f^0(x)=x$).
- (b) Montrer que les vecteurs $\left(f^i(x)\right)_{0 \le i \le k-1}$ forment une famille libre.
- (c) Que peut-on en déduire pour *k* ? Justifier votre réponse.

Remarque : Si une matrice M représente dans une base un endomorphisme f nilpotent, on dit que M est **nilpotente**.

- 11. Supposons qu'il existe R une racine carrée de A.
 - (a) Calculer A^2 , A^3 . En déduire que R est nilpotente.
 - (b) Calculer alors R^4 . Comparer avec A^2 puis conclure.

FIN DE L'ÉNONCÉ