DS 8: Calcul matriciel

Samedi 24 Avril 2004

CORRIGÉ

Problème I : Puissance et commutant d'une matrice .

Partie I : Calcul des puissances de A.

1.
$$\lambda$$
 valeur propre de $f \Leftrightarrow \det(A - \lambda I_3) = 0 \Leftrightarrow \det\begin{pmatrix} 3 - \lambda & -2 & 3 \\ 1 & -\lambda & 2 \\ 0 & 0 & 2 - \lambda \end{pmatrix} = 0$
 $\Leftrightarrow (2 - \lambda)(\lambda(\lambda - 3) + 2) = 0 \Leftrightarrow \lambda \in \{1, 2\}, \text{ donc } \lambda_1 = 1, \lambda_2 = 2$.

2. $det(A) = 4 \neq 0$, donc A non inversible.

3.
$$(x, y, z) \in E_1 \Leftrightarrow f(x, y, z) = (x, y, z) \Leftrightarrow = X$$
 où $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ ce qui donne $x = y, z = 0$.donc $E_1 = \{(x, x, 0); x \in \mathbb{R}\}, (1, 1, 0)$ est une base de E_1 et $\dim_{\mathbb{R}} E_1 = 1$.

Avec le même raisonnement précédent on trouve $E_2 = \{(2y, y, 0); y \in \mathbb{R}\}, (2,1,0)$ est une base de E_2 et $\dim_{\mathbb{R}} E_2 = 1$.

4.
$$\overrightarrow{u_1} = (1, 1, 0)$$
.

5.
$$\overrightarrow{u_2} = (2, 1, 0)$$
.

6. Posons
$$P = \mathcal{M}_{\mathcal{B}}(\mathcal{C})$$
 on a : $P = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, $\det(P) = -1 \neq 0$ donc \mathcal{C} libre dans \mathbb{R}^3 comme $Card(\mathcal{C}) = 3 = \dim_{\mathbb{R}} \mathbb{R}^3$ alors c'est une base .

7.
$$P_{\mathcal{B}\to\mathcal{C}} = \mathcal{M}_{\mathcal{B}}(\mathcal{C}) = P; P_{\mathcal{C}\to\mathcal{P}} = P^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

$$8. \begin{pmatrix} 3 & -2 & 3 \\ 1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

9. Car
$$f(\overrightarrow{u_1}) = \overrightarrow{u_1}; f(\overrightarrow{u_2}) = 2\overrightarrow{u_2}; f(\overrightarrow{u_3}) = \overrightarrow{u_2} + 2\overrightarrow{u_3}$$

10.
$$A = PTP^{-1}$$
.

- 11. Par récurrence sur $n \in \mathbb{N}^*$ avec : $\alpha_1 = 1$; $\alpha_{n+1} = 2^n + 2\alpha_n$.
- 12. Par récurrence sur $n \in \mathbb{N}^*$.
- 13. $A^n = PT^nP^{-1}$

Partie II : $Matrices\ commutant\ avec\ A$.

1. Il suffit de vérifier que :
$$I_3 \in C(A)$$
; $((M,N) \in C(A)^2, \lambda \in \mathbb{R} \implies M + \lambda N \in C(A))$.

2.
$$AM = MA \Leftrightarrow PTP^{-1}M = MPTP^{-1} \Leftrightarrow TP^{-1}MP = P^{-1}MPT \Leftrightarrow TM' = M'T$$
.

- 3. Poser $M' = (a_{i,j})_{1 \le i,j \le 3}$ il est simple de vérifier que $TM' = M'T \Leftrightarrow a_{1,2} = a_{1,3} = a_{2,1} = a_{3,1} = a_{3,2} = 0; a_{2,2} = a_{3,3}.$
- 4. Utiliser la formule $A = PTP^{-1}$.
- 5. Toute matrice M de C(A) s'ecrit sous la forme

$$a \left(\begin{array}{rrr} -1 & 2 & -1 \\ -1 & 2 & -1 \\ 0 & 0 & 0 \end{array} \right) + b \left(\begin{array}{rrr} 2 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{array} \right) + c \left(\begin{array}{rrr} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array} \right)$$

de là on trouve une famille génératrice de C(A) qu'il est simple de vérifier qu'elle est libre , donc une base de C(A) et par suite $\dim_{\mathbb{R}} C(A) = 3$.

Problème II : Etude d'un opérateur .

Partie I : Réstriction à un sous-espace vectoriel

- 1. $\alpha_1\varphi_1 + \alpha_2\varphi_2 + \alpha_3\varphi_3 + \alpha_4\varphi_4 = 0 \implies \forall x \in \mathbb{R}, \alpha_1\cos(\pi x) + \alpha_2\sin(\pi x) + \alpha_3x\cos(\pi x) + \alpha_4x\sin(\pi x) = 0$, pour x = 0 on trouve $\alpha_1 = 0$, pour x = 1 on trouve $\alpha_3 = 0$, pour $x = \frac{1}{2}$ et $x = -\frac{1}{2}$ on trouve le système $\frac{\alpha_2 + \frac{1}{2}\alpha_4 = 0}{-\alpha_2 + \frac{1}{2}\alpha_4 = 0}, \text{ donc } \alpha_2 = \alpha_4 = 0. \text{ Donc } \mathcal{B} \text{ est libre dans } F_{\pi} \text{ et c'en est une famille génératrice par définition de } F_{\pi} \text{ donc base de } F_{\pi} \text{ .}$
- 2. Tout calcul fait on trouve: $T(\varphi_1) = 0$; $T(\varphi_2) = 0$; $T(\varphi_3) = -\frac{2}{\pi}\varphi_2$; $T(\varphi_4) = -\frac{2}{\pi}\varphi_1$.
- 3. Soit $g \in T(F_{\pi})$ donc $\exists f \in F_{\pi}$ tel que g = T(f) or $f \in F_{\pi}$ donc s'ecrit sous la forme $f = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \alpha_3 \varphi_3 + \alpha_4 \varphi_4$ d'où $g = T(f) = -\alpha_3 \frac{2}{\pi} \varphi_2 \alpha_4 \frac{2}{\pi} \varphi_1 \in F_{\pi}$.

4.
$$M_{\pi} = -\frac{2}{\pi} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. $M_{\pi}^2 = 0 \text{ donc } T_{\pi}^2 = 0$.

5. De la matrice M_{π} il est clair que $\operatorname{rg} T_{\pi} = 2$ avec φ_1, φ_2 une base de $\operatorname{Im}(T_{\pi})$

6.
$$f = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \alpha_3 \varphi_3 + \alpha_4 \varphi_4 \in \operatorname{Ker}(T_\pi) \Leftrightarrow -\frac{2}{\pi} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = 0 \Leftrightarrow f = \alpha_1 \varphi_1 + \alpha_2 \varphi_2, \text{ et donc } (\varphi_1, \varphi_2) \text{ est une base de } \operatorname{Ker}(T_\pi).$$

7. T_{π} n'est pas injectif car $\operatorname{Ker}(T_{\pi}) \neq 0$.

${\bf Partie~II}:~\it R\'estriction~au~sous-espace~vectoriel~des~polyn\^omes~.$

1. $\forall 0 \leq k \leq d; T(X^k) = \frac{(X+1)^{k+1} - (X-1)^{k+1}}{k+1}$ est un polynôme de degré k car X^{k+1} se simplifie dans cette expression, et par linéarité de T, $\forall P \in \mathbb{R}_d[X] \deg T(P) = \deg P$ donc $T(P) \in \mathbb{R}_d[X]$ d'où $T(\mathbb{R}_d[X]) \subset \mathbb{R}_d[X]$.

2.
$$\forall 0 \le k \le d; T(X^k) = \frac{(X+1)^{k+1} - (X-1)^{k+1}}{k+1} = \frac{1}{k+1} \sum_{p=0}^{k+1} C_{k+1}^p (1 - (-1)^{k+1-p}) X^p$$

$$= \frac{2}{k+1} \sum_{p=0, \ k+1-p \text{ impair}}^{k+1} C_{k+1}^p X^p = \frac{2}{k+1} \sum_{p=0, \ k-p \text{ pair}}^{k} C_{k+1}^p X^p \text{ on enléve l'indice } p = k+1 \text{ pour-pair}$$

lequel k+1-p=0 est pair et pour les autres indices k+1-p impair est remplacé par k-p

$$\text{pair donc } A_d = \begin{pmatrix} 2 & 0 & \frac{2}{3} & \cdots \\ 0 & 2 & 0 \\ \vdots & \vdots & 2 & \vdots \\ \vdots & \vdots & 0 & \\ 0 & 0 & \vdots & \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

- 3. A_d est une matrice triangulaire dont les termes diagonaux sont tous égaux à 2 donc non nuls et par suite elle est inversible et dont Θ_d est bijectif.
- 4. Les valeurs propre de Θ_2 sont les solutions de l'équation $\det(A_2 \lambda I_3) = 0$ c'est à dire $(\lambda 2)^3 = 0$ donc 2 est l'unique valeur propre de Θ_2 .

Partie III : Résolution d'une équation .

- 1. Θ est linéaire (facile). De plus $\forall f \in \mathbb{R}[X]$ on a $f \in \mathbb{R}_d[X]$ avec $d = \deg(f)$ donc $\Theta(f) = T(f) = \Theta_d(f) \in \Theta_d(\mathbb{R}_d[X]) \subset \mathbb{R}_d[X] \subset \mathbb{R}[X]$ d'ou Θ endomorphisme de $\mathbb{R}[X]$.
- 2. $\forall f \in \mathbb{R}[X]$, on a $\Theta(f) = 0 \implies \Theta_d(f) = 0$ où $d = \deg(f)$ or Θ_d bijectif en particulier injectif d'où f = 0 donc Θ injectif. D'autre part $\forall g \in \mathbb{R}[X]$ on a $g \in \mathbb{R}_d[X]$ avec $d = \deg(g)$ or Θ_d est bijectif en particulier surjectif donc $\exists f \in \mathbb{R}_d[X]$ tel que $g = \Theta_d(f) = \Theta(f)$ d'où Θ surjectif donc bijectif.
- 3. Soit $f = a\varepsilon_2 + b\varepsilon_1 + c\varepsilon_0$ tel que $\Theta(f) = h$ alors $\Theta_2(f) = h$, équation qui s'écrit matriciellement sous la forme $A_2 \begin{pmatrix} c \\ b \\ a \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix}$ qui donne les solutions a = 3, b = 4, c = 1.

Problème III : matrices de Toeplitz.

Partie I

1. $S(\varepsilon_0) = 0, S(\varepsilon_1) = \varepsilon_0, \dots, S(\varepsilon_d) = \varepsilon_{d-1}$.

$$2. \ J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \dots & & & 0 \end{pmatrix}.$$

3. Par récurrence il est facile de montrer que : $S^k(\varepsilon_0) = 0, S^k(\varepsilon_1) = 0, \dots, S^k(\varepsilon_{k-1}) = 0, S^k\varepsilon_j = 0$

$$arepsilon_{j-k} ext{ si } j \geq k ext{ donc } \mathcal{M}(S^k) = \left(egin{array}{cccccc} 0 & \dots & 1 & 0 & \dots & 0 \\ dots & \ddots & \ddots & \ddots & dots \\ dots & & \ddots & \ddots & 0 \\ dots & & & \ddots & & 1 \\ & & & & & \ddots & & 1 \\ & & & & & \ddots & & 0 \\ 0 & \dots & & & & 0 \end{array} \right).$$

4. D'aprés la question précédente pour k=d on a : $S^d(\varepsilon_0)=0, S^d(\varepsilon_1)=0_0, \ldots, S^d(\varepsilon_{d-1})=0, S^d(\varepsilon_d)=0$, donc $S^{d+1}(\varepsilon_0)=0, S^{d+1}(\varepsilon_1)=0_0, \ldots, S^{d+1}(\varepsilon_d)=0$, donc $S^{k+1}=0$ sur un base,

3

par linéarité $S^{k+1} = 0$.

Soit $(\alpha_k)_{0 \leq k \leq d} \in \mathbb{R}^{d+1}$ tel que $\alpha_0 I_d + \alpha_1 S + \ldots + \alpha_d S^d = 0$, en composant par S^{d+1} dans cette égalité on trouve $\alpha_0 = 0$ (NB : $S^k = 0, \forall k \geq d+1$ car $S^{d+1} = 0$.puis on compose par S^d pour trouver $\alpha_1 = 0$ et ainsi de suite jusqu'à annuler toutes les constantes donc $(I_d, S, S^2, \ldots, S^d)$ est une famille libre de $\mathcal{L}(\mathbb{R}_d[X])$.

- 5. On a $S(\varepsilon_j) = \sum_{i=0}^d b_{i,j}\varepsilon_i$, et $S(\varepsilon_0) = 0$, $S(\varepsilon_1) = \varepsilon_0$, ..., $S(\varepsilon_d) = \varepsilon_{d-1}$, donc $u \in \mathcal{U} \Leftrightarrow uoS(\varepsilon_j) = Sou(\varepsilon_j)$, $\forall 0 \leq j \leq d \Leftrightarrow u(\varepsilon_{j-1}) = S(\sum_{i=0}^d b_{i,j}\varepsilon_i)$; $\forall 1 \leq j \leq d$ et $0 = S(\sum_{i=0}^d b_{i,0}\varepsilon_i)$ pour $j = 0 \Leftrightarrow \sum_{i=0}^d b_{i,j-1}\varepsilon_i = \sum_{i=1}^d b_{i,j}\varepsilon_{i-1}$ et $0 = \sum_{i=1}^d b_{i,0}\varepsilon_{i-1} \Leftrightarrow \sum_{i=1}^d b_{i-1,j-1}\varepsilon_{i-1} = \sum_{i=1}^d b_{i,j}\varepsilon_{i-1}$, (changement d'indice dans la 1ere somme i étant remplacé par i-1) et $b_{i,0} = 0$, $\forall i \geq 1 \Leftrightarrow b_{i,j} = b_{i-1,j-1}$ et $b_{i,0} = 0$, $\forall i \geq 1 \Rightarrow b_{i,j} = b_{0,j-i} = 0$ si j > i donc la matrice est triangulaire. Pour la réciproque reprendre le raisonnemnt précédent de la fin pour monter la démonstration.
- 6. Soit $u \in \mathcal{L}(\mathbb{R}_d[X])$, $u \in \mathcal{U} \Leftrightarrow \exists (\alpha_j)_{0 \leq j \leq d}$ tel que $u = \alpha_0 I_d + \alpha_1 S + \ldots + \alpha_d S^d \Leftrightarrow B = \alpha_0 I_d + \alpha_1 J + \ldots + \alpha_d J^d$ d'aprés la forme des matrices J^k trouvée précédement (des 1 sur une diagonale et partout des zéros) on conclut que dans la 1ére diagonale $(b_{i,i+1})_{0 \leq i \leq d-1}$ il n'y a que des α_0 , donc $b_{0,1} = b_{i,i+1}$; dans l'autre diagonale $(b_{i,i+2})_{0 \leq i \leq d-2}$ il n'y a que des α_1 , donc $b_{0,2} = b_{i,i+2}$; et dans le cas général $b_{0,j} = b_{i,i+j}$ donc $b_{i,j} = b_{0,j-i}$ et pour terminer; toutes les matrices J^k sont triangulaires dons B aussi puisque c'en est une combinaison linéaire.

Partie II :

1. $u = \sum_{k=1}^{d} \lambda_k S^k = SS'$ avec $S' = \sum_{k=1}^{d} \lambda_k S^{k-1}$, il est clair que SS' = S'S d'où $u^{d+1} = (SS')^{d+1} = S^{d+1}S'^{d+1} = 0$ car $S^{d+1} = 0$.

Avec le même raisonnement adapté pour montrer que $(I_d, S, S^2, \ldots, S^d)$ est une famille libre de \mathcal{U} on montrer aussi que $(I_d, u, u^2, \ldots, u^d)$ est une famille libre de \mathcal{U} et comme son cardinal est égal à la dimension de \mathcal{U} on conclut que c'est une base.

2. Comme $\operatorname{Card}(e_0,\ldots,e_d)=d+1=\dim\mathbb{R}_d[X]$ il suffit de montrer que (e_0,\ldots,e_d) est libre. En effet, soit $(\alpha_j)_{0\leq j\leq d}\in\mathbb{R}^{d+1}$ tel que $\alpha_0e_0+\alpha_1e_1+\ldots+\alpha_de_d=0$, donc $\alpha_0u^d(e_d)+\alpha_1u^{d-1}(e_d)+\ldots+\alpha_de_d=0$, on applique à cette égalité u^d , comme $u^j=0, \forall j\geq d+1$ il reste $\alpha_du^d(e_d)=\alpha_de_0=0$ donc $\alpha_d=0$, on applique cette fois u^{d-1} pour trouver $\alpha_{d-1}=0$ et ainsi de suite jusqu'à annuler tous les coefficients .

$$u(e_0) = u^{d+1}(e_d) = 0; u(e_1) = u^d(e_d) = e_0; \dots; u(e_d) = e_{d-1}, \text{ d'où } \mathcal{M}(u) = J.$$

Fin du corrigé

FIN

©: www.chez.com/myismail

Mamouni My Ismail PCSI 2 Casablanca Maroc