INT Management 2003

L'énoncé comporte deux problèmes indépendants. Ils doivent être rédigés sur des copies séparées

PROBLÈME I

La partie I et les questions 1 et 2 de la partie II sont indépendantes.

PARTIE I

Pour tout couple (a, b) de réels strictement positifs, on définit les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ par:

$$a_0 = a$$
, $b_0 = b$ puis $\forall n \in \mathbb{N}^*$, $a_n = \sqrt{a_{n-1}b_{n-1}}$ et $b_n = \frac{a_{n-1} + b_{n-1}}{2}$

Question 1

a) Montrer que pour tout $n \ge 1$. $a_n \le b_n$.

b) Montrer que les suites $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ sont monotones.

c) Montrer qu'elles convergent vers la même limite.

Question 2

On note L l'application qui à tout couple (a,b) de $\mathbb{R}_+^* \times \mathbb{R}_+^*$ associe la limite commune des deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$. Ainsi pour tout couple (a,b) de $\mathbb{R}_+^*\times\mathbb{R}_+^*$, $L(a,b)=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.

(a) Déterminer L(a, a) pour tout a > 0. Pour tout a > 0, tout b > 0 et tout $\lambda > 0$, exprimer L(b, a) et $L(\lambda a, \lambda b)$ en fonction de L(a, b).

b) On suppose a < b.

Montrer que pour tout $n \ge 1$, il existe $c_{n-1} \in]a_{n-1}, b_{n-1}[$ tel que $b_n - a_n = \frac{1}{8c_{n-1}} (b_{n-1} - a_{n-1})^2$.

En déduire que $\frac{1}{8h}(b_{n-1}-a_{n-1})^2 \leq b_n-a_n \leq \frac{1}{8a}(b_{n-1}-a_{n-1})^2$.

c) Expliciter finalement une suite
$$(\varepsilon_n)_{n\in\mathbb{N}}$$
 tendant vers l'infini telle que $\forall a>0, \ \forall b>0, \ \forall n\in\mathbb{N}, \ \frac{1}{\left(8\max(a,b)\right)^{\varepsilon_n-1}}|b-a|^{\varepsilon_n}\leq \left|b_n-a_n\right|\leq \frac{1}{\left(8\min(a,b)\right)^{\varepsilon_n-1}}\left|b-a\right|^{\varepsilon_n}.$

d) On suppose $a = \frac{1}{2}$ et b = 1.

Quelle majoration simple obtient-on pour $b_3 - a_3$, $b_4 - a_4$? (on rappelle que $2^{10} = 1024 > 1000 = 10^3$.)

Que pensez-vous de la vitesse de convergence des suites (a_n) et (b_n) ?

PARTIE II

Pour tout couple (a, b) de réels strictement positifs, on pose :

$$F(a,b) = \int_0^{\pi/2} \frac{dt}{\sqrt{a^2 \cos^2(t) + b^2 \sin^2(t)}}$$

Question 1

- a) Comparer F(a,b) et F(b,a) et pour tout $\lambda > 0$ exprimer $F(\lambda a, \lambda b)$ en fonction de F(a,b).
- b) Pour tout x > 0, on pose f(x) = F(1,x). Montrer que f est continue et monotone sur \mathbb{R}^*
- c) Exprimer F(a,b) en fonction de $f\left(\frac{b}{a}\right)$. En déduire que F est continue sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$.

Question 2

On suppose a < b.

a) A l'aide du changement de variable défini par $u=\varphi(t)=\sqrt{a^2\cos^2(t)+b^2\sin^2(t)}$ montrer que :

$$F(a,b) = \int_{a}^{b} \frac{du}{\sqrt{(b^2 - u^2)(u^2 - a^2)}}$$

b) Pour tout $u \in [a, b]$ on pose $h(u) = \frac{1}{2} \left(u + \frac{ab}{u} \right)$.

Étudier les variations de h sur [a, b] et tracer sa représentation graphique.

- c) Déterminer l'unique réel c appartenant à [a,b] tel que les restrictions h_1 et h_2 de h à [a,c] et à [c,b] admettent chacune une fonction réciproque. \nearrow Expliciter h_1^{-1} et h_2^{-1} et donner leurs tableaux de variations.
- d) On pose v = h(u). Montrer que $\sqrt{(b^2 u^2)(u^2 a^2)} = 2u\sqrt{\left(\frac{a+b}{2}\right)^2 v^2}$. Montrer que $F(a,b) = F\left(\sqrt{ab}, \frac{a+b}{2}\right)$. (On pensera à écrire $]a,b[=]a,c] \cup [c,b[)$

Question 3

- a) Montrer que pour tout (a,b) de $\mathbb{R}_+^* \times \mathbb{R}_+^*$ et tout $n \in \mathbb{N}$, $F(a,b) = F(a_n,b_n)$.
- b) Montrer finalement que $F(a,b) = \frac{\pi}{2L(a,b)}$.
- c) On suppose de nouveau $a=\frac{1}{2}$ et b=1. Montrer que $\frac{\pi}{2b_4}$ et $\frac{\pi}{2a_4}$ sont des valeurs approchées par défaut et par excès de F(a,b) à moins de 10^{-13} près.